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On the behaviour of the curvature lines
in the neighbourhood of an isolated ombilic point

by A. SzyBIiAk (Krakdw)

In the present paper we show that the curvature lines of a two-
dimensional surface form a phase space in the neighbourhood of an iso-
lated ombilic point; more exactly there appear two conjugate phase
spaces which admit ovals, spirals or one, two, three or four sectors which
are parabolic or hyperbolic. We give this solution only in the most com-
mon case where in the equation describing the curvature lines the first
degree terms dominate, i.e. the linear terms in the expansion of the first
and second metric tensors are not all proportional. This problem has
been tacled by G. Darboux [3]. The results which he has obtained, how-
ever, are not quite correct because he has left out a certain member from
his differential equation. Although this member is multiplied by a small
parameter, it is unbounded.

1. The equations of curvature lines. We assume that the
surface in question is represented in the neighbourhood of the ombilic
point under investigation by the first and second fundamental tensors
gix = ¢ilu, v) and hy = hy(n, ¢) (1, k = 1,2) and that this ombilic point
corresponds to v = 0, » = 0. We assume further that in a certain neigh-
bourhood of (0, 0) we have

gty ¥) = ix. + aptt - Bixv + riglu, v)
(1)

o (¢, k=1,2),
ha(u, v) = ogix + Vit + i ® + (0, V)

where ry(u, v) and sy(u, v) are small and of a lower order than ]/ uz + v2.
We assume also that o # 0, which means that the ombilic point under
investigation is not a flat point. Moreover, we assume that the first degree
membres in the expansions of g and Ay are not proportional, i.e. ogiy —
—hye # O‘]m).

When we substitute (1) in the left-hand member of the equation

of the curvature lines
u® uo v?
. d
9u Yo G| =0 ( :&?)’
hiy Ry Po |
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then after simple calculations we obtain the equation
(2)  (@yu+byv+ry(u, 0)) 2+ (@yu + byv +75(u, ©)) 2D +

+ (a3 % + by +74(u, v)) 92 = 0,
where 7;(u,v) (¢ =1, 2, 3) are small in comparision with ]/ u? + 2, and a;

0qs . o .
and b; are bilinear functions of g, ¢, air, Bk, Yir, #ix. By our assumption
we have

3
D@+ >0.
i=1

Equation (2) will be satisfied along the trajectories of the two
following dynamic systems:

(3) +V(a2— Q) U® + (250, — a,by — agh,) uv + (b3 — byby) v° + 0 (u, v) ,
| ¥ = a,u + b+ o(u, v);

(4% = au* + byo* —

(3%) —V (@2 — ,0) 4** 4 (205D — by — @b, ) u* v* (b2 — b by)v**+ 0 (u, v) ,
{ 7™ =au*+b,v*+o(u, v).

The quadratic form under the root sign is positive. This fact follows from
the existence of two orthogonal families of the curvature lines, or it may
be proved by a calculus. Then a proper affine transformation (%, v) >(z, ¥)
yields the following form of equations (3) and (3*)

(4) &= Az+By+ PY&+yt+o(2,9),
g =Cr+Dy+QVat+yt+o(a,y).

In view of our assumptions we have
(5) A2+ B2+C24+D2 >0, P*4+Q*2>0.

Since the perturbations o(u, v) have not any essential influence on the
qualitative shape of the phase plane (excluding the case of spirals
and ovals), we shall restrict ourselves to the consideration of the
system

& = Az +By +Pya?+ 2,

(6) _
gy = Co+Dy+Qya+y2.
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2. The general form of the solution. We introduce the polar

coordinates (r,#), which transform system (6) into

r~1# = A cos?d + (B + C)cosdsind + Dsin?d 4-Peosd -+ @sind ,
7 .
(7) # = Ccos?d + (D —A)cosdsind — Bsin?d + Q cosd — Psind .

We denote the right-hand members of equations (7) for »—% and & by
R(®) and T(&) respectively. The solution in the polar coordinates has
the form

(8) r(d) = Cexpfl% dd ,

where C is a positive integration constant. We shall transform system (7)
into a simpler form with less parameters. We have to consider several
cases, which we divide into two groups (A) and (B) according to

(A) B4+C=D—4=0
or
(B) (B+CR+(D—A)2>0.

(A) In this case we have
r=1% = A +Pcosd+Qsind,

& = ¢ +Qcosd—Psind.
The substitution
p = #—arctg(Q/P)
leads to a simpler form,
r~1¥ = a+8cosg,

@ = b+ ssing,
where 8 = Y P2+Q2. Then we have

-+ COS
rlp) = Cexp | £ dp,

where we have substituted ¢ = s~'a, o0 = s~'b. We have to investigate
the following three cases:

(A,) |o] > 1. We calculate the integral in (7) by substituting ¢ = tgg .
We obtain

— ] /Jo—1
r(p) = C|o+cosp|”~lexp (:9-1— (p) exp (a-rctg gﬁtgg) .

.The trajectories appear as spiral lines if ¢ # 0 and as oval lines if o = 0.
(A;) |o] = 1. Then we have

- e ? o?
r(p) = Ccos 5 €XP (gtg 2) .
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The phase space appears as one parabolic sector (!). The case p = 0 is
impossible because then both 2 and ¥ would be equal to 0 along a straight
line and H the ombilic point in question would not be isolated. In the
following we shall shown that neither can a case of four elliptic sectors
occur in our geometrical problem.

(A;) |o] < 1. In this case we have

ag—1

<« p lete Ete?
exp(a_lcp)e:\p((tg2tg2),

o—11
}anﬂ—g—a:

. p—a
sin ~—

rip) =0C

where a = arcsin |g|. The phase plane consists of two hyperbolic sectors.
(B) (B4+C®+(A—D)>0. A rotation through and angle v =
= 2~ laretg ﬁ_—th) and a homothety with a coefficient }'(B + C)? + (4 — D)?

will transform our system into
'r 1’4 =a-+sin2'% +pcos’d +¢sin'Y = "R('9),
9 =b+cos2’9 - qeos'd —psind = 'T('9) .
It will not lead to confusion if we denote the right-hand member again
by r and ¥ respectively and leave out the sign’. We shall compute the

integral in (8) using classical substitution and then decomposition into
simple fractions. The following cases are possible:

(B,) The denominator T(9) has no real zeros. Then the solution
has the shape

(9)

2
r(#) = Cexp(A9) n a; COs? v + Bicos 9 8in ) + p;sin? 12)0‘ e
1 2 272 2

X exp(n; arc tg (‘u,- ‘ tg gl + v,-))
where «;, Bi, ¥i, Giy Wiy iy Vi, 6; are constants and the quadratic ferms
0 d . D 9
, 2 R s QIn — Q1N —
a; Cos 2 + Bicos 5 sin 5 + y:8in 2

are both positive. The trajectories are spirals or ovals.

(B,) The denominator has two distinct real zeros, a; and a,. Then
we have

r(d) = C]Y
9 -?'1’)) )

9 O ., ]
s 2_ - - = J 2__ N * ) -
X (acos 2'+ﬂcos2s1n21—ybln 2) exp (naretg (,u tgg

sin

19—(1,'
2

44 9!
exp marctg(m tg3|+v,~) X

where
(10) A; = R(a)/T' () -

() For the definition of a sector cf. [4].
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No A; may be equal to zero because in that case the exit system (7) would
have a singular line. According to the signs of the parameters 4; we
might obtain the following reliefs

U=uq
A,<0, 4,<0 A, <0, 4,>0 A4,>0, 4,>0

In the last part of the paper we shall exclude the case of two elliptic
sectors.

(B;) The denominator 7'(#) has one double root «. In this case the

solution is
al4 ex B o«
L

sin

r(d)=¢

a

’!9 ’09 B 19 . 5 ¢ ' ’ﬁ )
( 22 Ysin Z P ,
X (acos 2+ﬂcos2sm2+ysm ) exp (1@9+arctg (,u‘tgzl-{—v ) .

The corresponding phase plane is as follows:

that is one parabolic sector.
(By;) T(#) has four distinct zeros a,, ..., a. Then we have

4
r (@) = Qe ”

i=1

A

2

a;

sin

¢ )
exp (niaretg (,u,-,tg 5] -+ v;)) .
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The phase plane is determinated by the signs of the numbers A4;. We
shall investigate this case in detail in the next part of the paper. There
are six combinations of the parabolic, hyperbolic and elliptic sectors
possible a priori but we shall exclude the elliptic.

(B;) The case of two distinct zeros a,, a, and one double a;. Then

we have
| g——tg

X exp (m- arctg (,u, tg2{ —I—v,)) .

— A
() = Cet sinﬁTa” ‘

Slll

(Bg) The case of two double roots @, = a3, a, = a,. Then we have
= Ce*? H ’sm exp B; X

t 12—tgﬂ

€37 %873

i=1
X exp (m arctg (Mi

D)
tg 5! -+ ’Vi)) .
Neither G; nor A; is equal to zero. The cases (B;) and (Bg) will be
considered later. It will be shown that they admit two hyperbolic and
one parabolic or two hyperbolic or three parabolic sectors.
It may easily be proved that the equation T'(#) = 0 cannot have
U2

a fourfold or a threefold root. In order to show this, we substitute ¢t = tgé
and our equation appears as equivalent to the algebraic equation
(b+q)tt—2pP +2b82—2pt+b—q =0,
which cannot be written in the form ({—a)*=0 or ({—a)*(t—p8) = 0.
8. The index. For a more exact investigation we shall compute

the Poincaré index of the singular point 0(0, 0). We base our calculations
on the formula ([2],” Chap. XVI, § 5)

. 1 ]
(11) lndO—Efdarctgé.

(BYs) First we take into consideration a system of the type described

as (B) in part 2. We assume that a?- b2 > 0. Then our system has the
following form in the Cartesian coordinates

Z=ar+(1-b)y+pr,

12 .
(12) y=1+bzr+tay+gqr,

where 7 = a2+ 2.
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We substitute a = g*cosa, b = g*sina, p = opcosf, ¢ = opsinp.
Then system (12) assumes the form
& = r(g*cos (9 + a) +sind + opcosp) ,

(13) . :
g = r({g®sin(? + a) 4 cos# + opsinf) .

We introduce the complex function &+ ¢y. We have

arg(x +y) :arctg%-l—Kn (K=0or K=1).

We put

ow=re¥r+1y), 2= pe?.
A simple computation yields us
w = w(z) = €% +gefz+1.

We denote the increase of any complex function % on a ecircle with
centre O and radius ¢ by 4,w. In view of (11) and (13) we have

1 J L e . .
%f darctg% = (& +1y) = Al P w) = e~ ? + 4,0
= —1+44,(e"2 + gez + 1) .

4,0 is equal to the number of those zeros of the function » which are
enclosed in the circle |2| < o. We denote those zeros by ¢, and {,. It
follows from the identity

49 = 12l

that on the circle p =¢; both % and 7 are equal to 0; this case takes no

part in our considerations. Then we see that the index of O is equal to

one of the numbers +1, 0 and —1, depending on the parameters a, b, p, q.
Now we return to the other cases. If a = b = 0, then we have

& =y+pr=r(sind+p),
y=x+qr =r(cosd+q)

and a similar methad to the above leads us to the conclusion that indO
is  equal to —1 or to 0 in conformity with Yp?+¢ > 1 or Vp*+ ¢ < L.
The case p?+¢* = 1 corresponds to a system which has a singular line
(because it is easy to compute that in this case £ and y are equal to zero
along a line ¥ = arcsinp = arccosgq).

Annales Polonici Mathematici XV 4
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(APis) If our system has the form described in part 2 then we substi-
tute, as in part (B®#), a = p*cosa, b = ¢*sing, p = opcosB, ¢ = oosinp.
Hence we find

@ = ax—by +pr = r(0*cos (9 +a)+opcosf) ,

y = bw+ay +qr = (g*sin(9 -- a) + opsin )
and
& +1y = r(e*z +ge?) .
Finding 4, of this function we see that ind O is equal to 0 or to 1 according
to whether ¢ < o or ¢ > o.
Summing up the above results we obtain
THEOREM 1. The index of the isolated singular point O for the dynamical
system
&= Az L By +Pya*Ly?,
§ = ot Dy +QVET Y

18 equal to one of the three numbers —1,0,1.

4. Investigation of the phase planes. Now we shall show,
using theorem 1, that elliptic sectors do not appear in the phase spaces

of the curvature lines. The starting point is Bendixon’s theorem [1],
which states that

(14) indO=1+

+ (number of elliptic sectors — number of hyperbolic sectors) .
We easily deduce from this formula and theorem 1, that, if the plane
has two sectors, then no elliptic sector can appear, and if we have four
sectors then only one elliptic sector can appear associated with one hyper-

bolic and two parabolic sectors. We shall show that even this case does
not hold.

YWe consider the formula

¥

4
. [, O—a4i ) )
3 — 29 . a1 , —_ .
(_10) r(9) = Ce I I sin — ‘ exp (’71 arctg (,ul‘tg?l\ =+ ¥ ) .

i=1

We arrange «; in such a way that 0 < ¢, < ap < @3 < a3 < 2w=. In view
of (9) and (10) we have

(16) A; = (T'(a)) ' (@ +sin2a; + pcosa; +¢sinay) .

The signs of T"(a;) are alternately + and — because the roots of T'(¢#) =0
are now all single. Then the formula (16) implies that if

lai>1+)p" ¢
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then
sign A; = signasign T"(a;)

and the signs of T'(aq;) are alternately -+ and —. Hence follows

LEMMA 1. If |a] > 1+ )/p*+ @ then we have four parabolic sectors.

Now we fix b,p and ¢ (still such that the equation 7(#) = 0 has
four real distinct roots) and we let a vary over the interval (— oo, o).
The variable ¢ = }/a?+b% then runs from — oo to b2 and returns to + oo.
By theorem 1 the index jumps over the values +1,0,—1,0, +1. Every
jump correponds to a change of the sign of a certain A;. It follows from (14)
that the value 0 of the index corresponds to four hyperbolic sectors.
If we choose a value a = a, > 1-+}'p?+¢* and a, = —a,, then the corre-
sponding parabolic sectors of the phase planes are oppcsite; they are
for instance the following:

a=a a=4a,

since we have the following relations between the corresponding values
of A;, denoted by A} and A} respectively:

sign A} = sign A% .
The index is equal to zero if and only if we have two parabolic with two

hyperbolic sectors. The index can be equal to 1 also in the case of one
elliptic with one hyperbolic and two parabolic sectors, as for instance

P

4%
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Then an elliptic sector may appear only if a is large, so that in the circle
{2] < Ya*+b* (in the z-plane) both roots of the equation

692>+ o6z +4i =0

are contained. But we have seen that, if a is large enough, then we have
four parabolic sectors, and every change of the phase plane must be
caused by a change of the sign of some A;. The four successive changes
of the signs of A; correspond to the jumps of |2| over the regions

l2] <lGaf, &) <ol <1&l, 16l <2l

and in consequence to the jumps of the index over the values —1,0, +1.
The only possible corresponding alternation of the phase planes is the
following: 4 parabolic, 2 hyperbolic with 2 parabolic, 4 hyperbolic, 2 para-
bolic with 2 hyperbolic and 4 parabolic sectors and there is no room
for any elliptic sector. Summing up our previous considerations we can
formnulate

LEMMA 2. If the phase plane of a dynamical system (5) consists of
one, two or three sectors, then mo elliplic sectors appear.

Now it remains to solve the case of three sectors, i.e. the case of
one double and two distinct roots of the equation 7' (#) = 0. We shall
exclude here the possibility of an elliptic sector by “splitting” the double
root and making use of lemma 2.

LEMMA 3. If we are given three distinct mumbers a,, a,,a, enclosed
in the interval [0, 27t) then there exist numbers b, p, ¢ and a, sSuch that a;
(t=1,2, 3,4) are roots of the equation

b+ sin28 + geos® — psind = 0

b,?,q and a, are continuous junctions of a,,a,, a,.
Proof. We determine b, 7 and g from the system of equations

(17) b +gcosa; —psina; = —cos2a; .
We put

1 cosa, —sina,

1 cosa; —sinag
or, using a brief notation,

4 =[1 cosa; —sina;];

2-14| is equal to the area of a triangle whose vertices have the Cartesian
coordinates (cosa;, sina;) (¢ =1,2,3). Then we see that detd # 0 and
after simple computation we obtain the’ formulas
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b = det[cos2a; cosa; sina;](detda)?,
p = 2det[1 cosa; cos?a;]j(detd)!,
g = 2det[1 sina; sin?a;](detd4)!.

In order to determine a we write equation (17), where we substitute the
values just found for b, p, 3. We transform equation (17) into an alge-
braic equation of the fourth degree using the common substitution

t= tgg. The three roots of this equation are 7; = tg%i (¢=1,2,3).

The fourth, 7, = tg%‘, will easily be computed from the Vieta identities.

Evidently a, depends continuously on a,, a,,a;. Thus we have proved
our lemma.

Now we consider a phase plane of system (10) which consists of
three sectors, i.e. the case of one double root a, and two distinct ay, a,.
Suppose that we have an elliptic sector. We split the boundary line 4 = a;
putting a;, = a, and choosing a, near @, but not inside the hypothetic
elliptic sector. We put a; = a; and we find @, by means of lemma 3. We
have constructed in this way a four-sector field which does contain any
elliptic sector. Now we let a, convergence to «,. Then the fields in those
sectors which are not contained between a, and «, vary continuously
converging towards those which correspond to the exit situation. A hyper-
bolic or a parabolic sector cannot be transformed into an elliptic one by
such a continuous transformation. Then our hypothesis on the existence
of an elliptic sector is false in this case also. Thus follows

LeEMMA 4. If the phase plane of (10) consists of three sectors, then
they are parabolic or hyperbolic, for instance

&

In the same way we obtain

LEMMA 5. If the phase plane consists of one sector (a case of one double
root), then this sector is parabolic; and if the equation T(9) = 0 has two
double roots, then the phase plane consists of two parabolic sectors
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As we have said, a threefold or a fourfold root of the equation 7'(3) = 0
cannot appear.
Summing up all these results, we can formulate

THEOREM 2. The possible phase spaces of the curvature lines determined
by (3) and (3*) are the following:

1° spiral lines or oval lines; the conjugate family forms parabolic
sectors,

2° one, two, three or four sectors: some of them, even in number, are
hyperbolic, the remainder are parabolic.

The boundary liwes between the sectors are the curvature lines.

COROLLARY. A curvature line which goes to an ombilic point does
not return to it (i.e. it does not form a loop which determines an elliptic sector)
but goes to another ombilic or to a flat point.

If we have a phase which consist of two or four hyperbolic sectors,
then the conjugate family consists also of two or four hyperbolic sectors
respectively. Then we conclude by means of theorem 2 and the corollary
that the following theorem holds:

THEOREM 3. At least four curvature lines with their tangents go lo an
ombilic point.

We remember that these results have been obtained on the assumption
that in the equations determining the curvature lines the first degree
members dominate. In more general cases more sectors can appear but
we may only suspect that also here elliptic sectors cannot appear.

Remark. More accurate considerations of the phase planes, which
correspond to the cases of double roots where perturbations play a part,
also depend on investigation of the system in which the higher terms
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dominate. We know that there may appear degenerated sectors, i.e.
sectors which have the vertex angle equal to 0, as for instance

In the case of singleroots the perturbations ean only curve the boundary
lines of the sectors or change ovals into spirals.
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