FASC. 2

## A REMARK ON v\*-ALGEBRAS

 $\mathbf{BY}$ 

## K. URBANIK (WROCŁAW)

In this note we adopt the definitions and notations given by E. Marczewski in [1]. Let  $\mathfrak{A} = (A; \mathbf{F})$  be an abstract algebra. For any non-void set  $E \subset A$  we denote by C(E) the subalgebra generated by  $E, C(\emptyset)$  denoting the set of all algebraic constants. For finite sets  $E = \{a_1, a_2, \ldots, \ldots, a_n\}$  we shall also use the notation  $C(E) = C(a_1, a_2, \ldots, a_n)$ . The set of independent generators of an algebra is called a *basis* of this algebra.

An algebra  $(A; \mathbf{F})$  is called a  $v^*$ -algebra if it satisfies the following conditions:

- (\*) each self-dependent element of A is an algebraic constant,
- (\*\*) if the elements  $a_1, a_2, ..., a_n$   $(n \ge 1)$  are independent and the elements  $a_1, a_2, ..., a_n, a_{n+1}$  are dependent  $(a_1, a_2, ..., a_{n+1} \in A)$ , then  $a_{n+1} \in C(a_1, a_2, ..., a_n)$ .
- W. Narkiewicz proved in [3] that the independence in  $v^*$ -algebras has the principal properties of linear independence. A representation theorem for  $v^*$ -algebras was proved in [5], [6] and [7]. The purpose of this note is to prove a theorem which gives an affirmative answer to a problem raised by S. Fajtlowicz (The New Scottish Book, Problem 792).

THEOREM. If an algebra A satisfies the following conditions

- (i) each set of independent elements in A can be extended to a basis of A,
- (ii) each subalgebra of  $\mathfrak A$  either consists of algebraic constants of  $\mathfrak A$  or has a basis consisting of independent elements of  $\mathfrak A$ , then it is a  $v^*$ -algebra.

We note that  $v^*$ -algebras have the properties (i) and (ii) (see [3]). Thus the theorem gives a characterization of  $v^*$ -algebras. Before proving the theorem we shall prove some lemmas.

Given a subalgebra  $\mathfrak B$  of the algebra  $\mathfrak A$ , we put  $\gamma_{\mathfrak A}(\mathfrak B)=0$  if all elements of the carrier of  $\mathfrak B$  are algebraic constants in  $\mathfrak A$ . In the remaining case, if  $\mathfrak B$  is finitely generated, then  $\gamma_{\mathfrak A}(\mathfrak B)$  is the minimal number of generators of  $\mathfrak B$  and  $\gamma_{\mathfrak A}(\mathfrak B)=\infty$  if  $\mathfrak B$  is not finitely generated. Further,  $\iota_{\mathfrak A}(\mathfrak B)=\infty$  if the carrier of  $\mathfrak B$  contains sets of every finite power consisting of inde-

pendent elements of  $\mathfrak{A}$ . In the remaining case  $\iota_{\mathfrak{A}}(\mathfrak{B})$  is defined as the maximal number of elements belonging to the carrier of  $\mathfrak{B}$  and independent in  $\mathfrak{A}$ . The constants  $\gamma_{\mathfrak{A}}(\mathfrak{A})$  and  $\iota_{\mathfrak{A}}(\mathfrak{A})$  denoted by  $\gamma(\mathfrak{A})$  and  $\iota(\mathfrak{A})$  respectively were introduced and investigated by E. Marczewski in [2].

In what follows we shall consider the algebra A with the properties (i) and (ii).

LEMMA 1. No subalgebra of A containing an infinite set of elements independent in A is finitely generated.

Proof. Suppose the contrary. Let  $b_1, b_2, \ldots$  be a sequence of independent elements of  $\mathfrak{A}$  belonging to a finitely generated subalgebra  $C(a_1, a_2, \ldots, a_n)$ . By (i) the set  $b_1, b_2, \ldots$  can be extended to a basis of  $\mathfrak{A}$ . Consequently, there exist elements  $c_1, c_2, \ldots, c_m$  and (k+m)-ary algebraic operations  $f_1, f_2, \ldots, f_n$  such that the elements  $c_1, c_2, \ldots, c_m, b_1, b_2, \ldots$  are independent in  $\mathfrak{A}$  and

$$a_j = f_j(b_1, b_2, \ldots, b_k, c_1, c_2, \ldots, c_m) \quad (j = 1, 2, \ldots, n).$$

Hence it follows that the elements  $c_1, c_2, ..., c_m, b_1, b_2, ...$  belong to the subalgebra  $C(b_1, b_2, ..., b_k, c_1, c_2, ..., c_m)$  which contradicts the independence of  $c_1, c_2, ..., c_m, b_1, b_2, ...$  The lemma is thus proved.

By Theorem 3 in [4] if  $\mathfrak{A}$  has n generators and n+1 independent elements, then it contains an infinite set of independent elements. Consequently, as a consequence of Lemma 1 we have the following

COROLLARY 1.  $\iota(\mathfrak{A}) \leqslant \gamma(\mathfrak{A})$ .

LEMMA 2. For each subalgebra  $\mathfrak V$  of  $\mathfrak A$  the formula  $\iota_{\mathfrak A}(\mathfrak V)=\gamma_{\mathfrak A}(\mathfrak V)$  holds.

Proof. By (ii) for each subalgebra  $\mathfrak{V}$  of  $\mathfrak{A}$  we have the inequality  $\iota_{\mathfrak{A}}(\mathfrak{V}) \geqslant \gamma_{\mathfrak{A}}(\mathfrak{V})$ . Suppose that the assertion of the Lemma is not true. There exists then a subalgebra  $\mathfrak{C}$  of  $\mathfrak{A}$  for which the inequality  $\iota_{\mathfrak{A}}(\mathfrak{C}) > \gamma_{\mathfrak{A}}(\mathfrak{C})$  holds. Hence we get inequality

$$1\leqslant \gamma_{\mathfrak{A}}(\mathfrak{C})<\infty.$$

Moreover, by Corollary 1,  $\mathfrak{C} \neq \mathfrak{A}$ . Put  $k = \gamma_{\mathfrak{A}}(\mathfrak{C})$ . Let  $a_1, a_2, \ldots, a_k$  be generators of  $\mathfrak{C}$  and  $b_1, b_2, \ldots, b_{k+1}$  independent in  $\mathfrak{A}$  elements of  $\mathfrak{C}$ . Evidently, for some algebraic k-ary operations  $f_1, f_2, \ldots, f_{k+1}$  we have

(2) 
$$b_j = f_j(a_1, a_2, ..., a_k) \quad (j = 1, 2, ..., k+1).$$

We define by induction the (n+k)-tuples  $c_1, c_2, \ldots, c_n, u_1^{(n)}, u_2^{(n)}, \ldots, u_k^{(n)}$   $(n=1,2,\ldots)$  of elements of  $\mathfrak C$  setting

(3) 
$$c_1 = b_1, \quad u_j^{(1)} = b_{j+1} \quad (j = 1, 2, ..., k), \\ c_{n+1} = f_1(u_1^{(n)}, u_2^{(n)}, ..., u_k^{(n)}),$$

(4) 
$$u_j^{(n+1)} = f_{j+1}(u_1^{(n)}, u_2^{(n)}, \ldots, u_k^{(n)}) \quad (j = 1, 2, \ldots, k).$$

We assert that for all n the elements  $c_1, c_2, \ldots, c_n, u_1^{(n)}, u_2^{(n)}, \ldots, u_k^{(n)}$  are independent in  $\mathfrak{A}$ . Indeed, this is true for n=1. Suppose that  $c_1, c_2, \ldots, c_n, u_1^{(n)}, u_2^{(n)}, \ldots, u_k^{(n)}$  are independent in  $\mathfrak{A}$ . To show the independence of  $c_1, c_2, \ldots, c_{n+1}, u_1^{(n+1)}, u_2^{(n+1)}, \ldots, u_k^{(n+1)}$  we ought to prove that if, for some algebraic operations f and g, the equation

(5) 
$$f(c_1, c_2, ..., c_{n+1}, u_1^{(n+1)}, u_2^{(n+1)}, ..., u_k^{(n+1)})$$
  
=  $g(c_1, c_2, ..., c_{n-1}, u_1^{(n+1)}, u_2^{(n+1)}, ..., u_k^{(n+1)})$ 

holds, then f = g identically in the algebra  $\mathfrak{A}$ . Since  $\mathfrak{C} \neq \mathfrak{A}$ , the set  $\{c_1, c_2, \ldots, c_n, u_1^{(n)}, u_2^{(n)}, \ldots, u_k^{(n)}\}$  is not a basis of the algebra  $\mathfrak{A}$ . On the other hand, by (i), it can be extended to a basis of  $\mathfrak{A}$ . Consequently, by Corollary 1, we have the inequality  $\gamma(\mathfrak{A}) \geqslant n+k+1$ . Thus, applying (i) to the set  $\{b_1, b_2, \ldots, b_{k+1}\}$  of independent elements, we infer that there exist elements  $d_1, d_2, \ldots, d_n$  in the algebra  $\mathfrak{A}$  such that  $d_1, d_2, \ldots, d_n, b_1, b_2, \ldots, b_{k+1}$  are independent. From (3), (4) and (5) we obtain the equation

(6) 
$$f(c_1, c_2, ..., c_n, f_1(u_1^{(n)}, u_2^{(n)}, ..., u_k^{(n)}), ..., f_{k+1}(u_1^{(n)}, u_2^{(n)}, ..., u_k^{(n)}))$$
  
=  $g(c_1, c_2, ..., c_n, f_1(u_1^{(n)}, u_2^{(n)}, ..., u_k^{(n)}), ..., f_{k+1}(u_1^{(n)}, u_2^{(n)}, ..., u_k^{(n)})).$ 

By the independence of  $c_1, c_2, \ldots, c_n, u_1^{(n)}, u_2^{(n)}, \ldots, u_k^{(n)}$  it follows that (6) will be preserved if we substitute for  $c_1, c_2, \ldots, c_n$  the elements  $d_1, d_2, \ldots, d_n$  and for  $u_1^{(n)}, u_2^{(n)}, \ldots, u_k^{(n)}$  the elements  $a_1, a_2, \ldots, a_k$ . Then, by (2), equation (6) passes into equation

$$f(d_1, d_2, \ldots, d_n, b_1, b_2, \ldots, b_{k+1}) = g(d_1, d_2, \ldots, d_n, b_1, b_2, \ldots, b_{k+1})$$

which, by the independence of  $d_1, d_2, \ldots, d_n, b_1, b_2, \ldots, b_{k+1}$  implies the identity f = g. Thus, for every n, the elements  $c_1, c_2, \ldots, c_n, u_1^{(n)}, u_2^{(n)}, \ldots, u_k^{(n)}$  are independent in the algebra  $\mathfrak{A}$ . Hence, in particular, it follows that the elements  $c_1, c_2, \ldots$  from  $\mathfrak{C}$  are independent in the algebra  $\mathfrak{A}$ . Consequently, by Lemma 1, the subalgebra  $\mathfrak{C}$  is not finitely generated which contradicts (1). The Lemma is thus proved.

LEMMA 3. If the elements  $a_1, a_2, \ldots, a_n$  belong to a subalgebra  $\mathfrak{V}$  of  $\mathfrak{A}$  with  $\gamma_{\mathfrak{A}}(\mathfrak{V}) = n \geqslant 1$  and are independent in  $\mathfrak{A}$ , then they generate  $\mathfrak{V}$ .

Proof. By Lemma 2,  $\iota_{\mathfrak{A}}(\mathfrak{B}) = n$ . Consequently, by (ii), the subalgebra  $\mathfrak{B}$  has an *n*-element basis  $b_1, b_2, \ldots, b_n$  consisting of elements independent in  $\mathfrak{A}$ . By (i) the set  $\{b_1, b_2, \ldots, b_n\}$  can be extended to a basis  $\{b_1, b_2, \ldots, b_n\} \cup C$  of the algebra  $\mathfrak{A}$ .

First we shall prove that the set  $\{a_1, a_2, ..., a_n\} \cup C$  consists of independent elements. Let  $f_1, f_2, ..., f_n$  be these algebraic operations for which

(7) 
$$a_j = f_j(b_1, b_2, \ldots, b_n) \quad (j = 1, 2, \ldots, n).$$

By (i) the set  $\{a_1, a_2, \ldots, a_n\}$  of independent elements can be extended to a basis  $\{a_1, a_2, \ldots, a_n\} \cup D$  of  $\mathfrak{A}$ . By Lemma 2 and Theorem (iv) in [1], we have the formula

(8) 
$$\operatorname{card} C = \operatorname{card} D$$
.

Let  $c_1, c_2, \ldots, c_m \in C$  and, for some algebraic operations f and g,  $f(a_1, a_2, \ldots, a_n, c_1, c_2, \ldots, c_m) = g(a_1, a_2, \ldots, a_n, c_1, c_2, \ldots, c_m)$ . Substituting (7) into the last equation we obtain

(9) 
$$f(f_1(b_1, b_2, ..., b_n), ..., f_n(b_1, b_2, ..., b_n), c_1, c_2, ..., c_m)$$
  
=  $g(f_1(b_1, b_2, ..., b_n), ..., f_n(b_1, b_2, ..., b_n), c_1, c_2, ..., c_m).$ 

From the independence of  $b_1, b_2, ..., b_n, c_1, c_2, ..., c_m$  it follows that (9) will be preserved if we substitute for  $c_1, c_2, ..., c_m$  some elements  $d_1, d_2, ..., d_m$  from D. This substitution is possible by virtue of (8) and leads, according to (7), to the equation

$$f(a_1, a_2, \ldots, a_n, d_1, d_2, \ldots, d_m) = g(a_1, a_2, \ldots, a_n, d_1, d_2, \ldots, d_m).$$

Now, taking into account the independence of  $a_1, a_2, ..., a_n, d_1, d_2, ..., d_m$ , we get the identity f = g. Thus the set  $\{a_1, a_2, ..., a_n\} \cup C$  consists of independent elements.

Now we shall prove that it is a basis of  $\mathfrak{A}$ . Suppose the contrary. By (i) there exists an element d in the algebra  $\mathfrak{A}$  such that the elements of the set  $\{d, a_1, a_2, \ldots, a_n\} \cup C$  are independent. Since the set  $\{b_1, b_2, \ldots, b_n\} \cup C$  is a basis of  $\mathfrak{A}$ , we can find elements  $v_1, v_2, \ldots, v_p$  in C such that  $d \in C(b_1, b_2, \ldots, b_n, v_1, v_2, \ldots, v_p) = \mathfrak{E}$ . Evidently,  $\gamma_{\mathfrak{A}}(\mathfrak{E}) \leq n+p$ . On the other hand, the subset  $\{d, a_1, a_2, \ldots, a_n, v_1, v_2, \ldots, v_p\}$  of the carrier of  $\mathfrak{E}$  consists of independent in  $\mathfrak{A}$  elements. Thus  $\iota_{\mathfrak{A}}(\mathfrak{E}) \geq n+p+1$  which contradicts Lemma 2. Thus the set  $\{a_1, a_2, \ldots, a_n\} \cup C$  is a basis of  $\mathfrak{A}$ .

Let  $g_1, g_2, \ldots, g_n$  and  $w_1, w_2, \ldots, w_q$  be these algebraic operations in  $\mathfrak{A}$  and elements of C respectively for which

$$b_j = g_j(a_1, a_2, \ldots, a_n, w_1, w_2, \ldots, w_q) \quad (j = 1, 2, \ldots, n).$$

Hence and from (7) it follows that

$$(10) b_j = g_j(f_1(b_1, b_2, ..., b_n), ..., f_n(b_1, b_2, ..., b_n), w_1, w_2, ..., w_q)$$

$$(j = 1, 2, ..., n).$$

From the independence of  $b_1, b_2, ..., b_n, w_1, w_2, ..., w_q$  it follows that (10) will be preserved if we substitute for  $w_1, w_2, ..., w_q$  the element  $a_1$ . Consequently, by (7),

$$b_j = g_j(a_1, a_2, ..., a_n, a_1, a_1, ..., a_n) \quad (j = 1, 2, ..., n)$$

which shows that the elements  $a_1, a_2, \ldots, a_n$  generate the subalgebra  $\mathfrak{V}$ . The Lemma is thus proved.

LEMMA 4. If  $\gamma_{\mathfrak{A}}(\mathfrak{B}) = n \geqslant 1$  and the elements  $a_1, a_2, \ldots, a_n$  generate the subalgebra  $\mathfrak{B}$ , then they are independent in  $\mathfrak{A}$ .

Proof. By (ii) and Lemma 2 there exists an *n*-element basis  $b_1, b_2, \ldots, b_n$  of  $\mathfrak{B}$ . Let  $f_1, f_2, \ldots, f_n$  be these algebraic operations for which

(11) 
$$b_j = f_j(a_1, a_2, ..., a_n) \quad (j = 1, 2, ..., n).$$

Put

(12) 
$$c_j = f_j(b_1, b_2, ..., b_n) \quad (j = 1, 2, ..., n).$$

By a Marczewski's theorem ([1], p. 60) the elements  $c_1, c_2, \ldots, c_n$  are independent in  $\mathfrak A$  and, consequently, by Lemma 3, form a basis of the subalgebra  $\mathfrak B$ . Taking into account the representation

$$(13) b_j = g_j(c_1, c_2, \ldots, c_n) (j = 1, 2, \ldots, n),$$

where  $g_1, g_2, \ldots, g_n$  are algebraic operations, we have, by (12), the equation

$$(14) \quad b_j = g_j(f_1(b_1, b_2, \ldots, b_n), \ldots, f_n(b_1, b_2, \ldots, b_n)) \quad (j = 1, 2, \ldots, n).$$

From the independence of  $b_1, b_2, \ldots, b_n$  it follows that (14) will be preserved if we substitute for  $b_1, b_2, \ldots, b_n$  the elements  $a_1, a_2, \ldots, a_n$ . It follows from (11) that, after this substitution, (14) passes into the equation

$$a_j = g_j(b_1, b_2, ..., b_n) \quad (j = 1, 2, ..., n).$$

Hence and from (13), by virtue of a Marczewski's theorem ([1], p. 60) we get the independence of  $a_1, a_2, ..., a_n$  which completes the proof.

Proof of the Theorem. Suppose that the algebra  $\mathfrak{A}$  has properties (i) and (ii). Let a be a self-dependent element of  $\mathfrak{A}$ . By Lemma 4 the inequality  $\gamma_{\mathfrak{A}}(C(a)) > 0$  would imply the independence of a. Thus  $\gamma_{\mathfrak{A}}(C(a)) = 0$  and, consequently, a is an algebraic constant in  $\mathfrak{A}$ . Condition (\*) is thus proved.

To prove condition (\*\*) let us suppose that the elements  $a_1, a_2, \ldots, a_n$  are independent in  $\mathfrak A$  and the elements  $a_1, a_2, \ldots, a_n, a_{n+1}$  are dependent in  $\mathfrak A$ . By Lemmas 2 and 4 we have the formula  $\gamma_{\mathfrak A}(C(a_1, a_2, \ldots, a_{n+1})) = n$ . Hence and from Lemma 3 it follows that the elements  $a_1, a_2, \ldots, a_n$  generate the subalgebra  $C(a_1, a_2, \ldots, a_{n+1})$  which implies the condition (\*\*). Thus  $\mathfrak A$  is a  $v^*$ -algebra.

## REFERENCES

- [1] E. Marczewski, Independence and homomorphisms in abstract algebras, Fundamenta Mathematicae 50 (1961), p. 45-61.
- [2] Nombre d'éléments indépendants et nombre d'éléments générateurs dans les algèbres abstraites finies, Annali di Matematica (4) 59 (1962), p. 1-10. (Correction, ibidem p. 349).

- [3] W. Narkiewicz, Independence in a certain class of abstract algebras, Fundamenta Mathematicae 50 (1962), p. 333-340.
- [4] S. Świerczkowski, On independent elements in finitely generated algebras, Bulletin de l'Académie Polonaise des Sciences, Série des sc. math., astr. et phys., 6 (1958), p. 749-752.
- [5] K. Urbanik, A representation theorem for v\*-algebras, Fundamenta Mathematicae 52 (1963), p. 291-317.
- [6] A representation theorem for two-dimensional v\*-algebras, ibidem 57 (1965), p. 215-236.
- [7] Linear independence in abstract algebras, Colloquium Mathematicum 14 (1966), p. 233-255.

INSTITUTE OF MATHEMATICS OF THE WROCŁAW UNIVERSITY INSTITUTE OF MATHEMATICS OF THE POLISH ACADEMY OF SCIENCES

Reçu par la Rédaction le 4.5.1968