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A REMARK ON v*-ALGEBRAS
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K. URBANIK (WROCLAW)

In this note we adopt the definitions and notations given by E. Mar-
czewski in [1]. Let A = (4; F) be an abstract algebra. For any non-void
set £ = A we denote by C(E) the subalgebra generated by E, C(9)
denoting the set ot all algebraic constants. For finite sets £ = {a,, a,, ...,
...y @,} we shall also use the notation C(E) = C(a,, a;,...,a,). The
set of independent generators of an algebra is called a basis of this algebra.

An algebra (4;F) is called a v*-algebra if it satisfies the following
conditions:

(*) each self-dependent element of A is an algebraic constant,

(**) if the elements a,, a,,...,a, (» > 1) are independent and the
elements a,, a,,..., a,, a,,, are dependent (a,,a,,...,a,,,€4), then
Un1€C(Ay, Qay ..oy By).

W. Narkiewicz proved in [3] that the independence in v*-algebras
has the principal properties of linear independence. A representation
theorem for v*-algebras was proved in [5], [6] and [7]. The purpose of
this note is to prove a theorem which gives an affirmative answer to
a problem raised by S. Fajtlowicz (The New Scottish Book, Problem 792).

THEOREM. If an algebra W satisfies the following conditions
(i) each set of independent elements in U can be extended to a basis of A,

(ii) each subalgebra of W either consists of algebraic constants of A or
has a basis consisting of independent elements of U,
then it is a v*-algebra.

We note that v*-algebras have the properties (i) and (ii) (see [3]).
Thus the theorem gives a characterization of v*-algebras. Before proving
the theorem we shall prove some lemmas.

Given a subalgebra B of the algebra A, we put y(B) = 0 if all elements
of the carrier of B are algebraic constants in UA. In the remaining case,
if B is finitely generated, then yy (B) is the minimal number of generators
of B and yy(B) = oo if B is not finitely generated. Further, 4 (B) = oo
if the carrier of B contains sets of every finite power consisting of inde-



198 ' K. URBANIK

pendent elements of . In the remaining case i (B) is defined as the
maximal number of elements belonging to the carrier of 8 and indepen-
dent in A. The constants yy(A) and ¢y (A) denoted by p(A) and ¢(A)
respectively were introduced and investigated by E. Marczewski in [2].

In what follows we shall consider the algebra U with the properties
(i) and (ii).

LEMMA 1. No subalgebra of U containing an infinite set of elemenis
independent in W is finitely generated.

Proof. Suppose the contrary. Let b,, b,, ... be a sequence of inde-
pendent elements of A belonging to a finitely generated subalgebra
C(ayy @3y ...y0,). By (i) the set b,, b,,... can be extended to a basis
of 2. Consequently, there exist elements ¢,, ¢y, ..., ¢n and (k4 m)-ary
algebraic operations f,,f,,...,f, such that the elements e¢,,¢,,...
veey Cmy by, by, ... are independent in Y and

af =f1(bl’ b27 te) bk’ 01, 02’ M | Om) (j = 1’ 27 R 4 n)'

Hence it follows that the elements ¢, ¢y, ..., €m, by, by, ... belong
to the subalgebra C(b,, b,, ..., bx, €1, €2y ..., Cn) Which contradicts the
independence of ¢,,¢sy ...y Cpny by, by, ... The lemma is thus proved.

By Theorem 3 in [4] if A has »n generators and n+1 independent
elements, then it contains an infinite set of independent elements. Con-
sequently, as a consequence of Lemma 1 we have the following

COROLLARY 1. () < y(A).

LeEMMA 2. For each subalgebra B of U the formula iy (B) = yy(B)
holds. )

Proof. By (ii) for each subalgebra B of A we have the inequality
ty(B) = y4(B). Suppose that the assertion of the Lemma is not true.
There exists then a subalgebra € of U for which the inequality ¢y (C)
> y9(€) holds. Hence we get inequality

(1) 1 < y9(€) < oo.

Moreover, by Corollary 1, € # . Put k = y4(C€). Let a,, a,, ..., ax
be generators of € and b,, b,, ..., bx,, independent in A elements of C.
Evidently, for some algebraic k-ary operations f,, fs, ..., fry1 We have

(2) b;:f,(al, az,...,ak) (j=1,2,...,k+].).

We define by induction the (n-+ k)-tuples ¢, gy ..., Ca, ul™, ud?, ...,
ey uf) (n=1,2,...) of elements of € setting

¢, = by, u?): i (J=1,2,..., k),
(3) Cn4+1 =f1(u(1n)7u§n)7 '-'7'“;:"))’

(4) u?"“’ = f7'+1('“(1n)7 'u(zn)y ceey '“;cn)) (1=1,2,..., k).
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We assert that for all n the elements ¢;, ¢y, ..., ¢u, u{™, uf?, ..., ul
are independent in UA. Indeed, this is true for » = 1. Suppose that

€1y gy envy Cny ™, u$™, ..., ul? are independent in UA. To show the inde-
pendence of ¢, Cyy ..., Cuyr, u*V, ulD L uf™) we ought to prove

that if, for some algebraic operations f and g, the equation
(8)  fl01y Cayevy Gayrs u"HY, MY, L ufMHY)

_ n+41 n41 (n4+1
—9(01702’-"701»-1’“3 )7”’& )7---,uk ))

holds, then f = g identically in the algebra U. Since € # A, the set
€1y Cay vvey Cny ™, ul™, ..., uf"} is not a basis of the algebra A. On the
other hand, by (i), it can be extended to a basis of W. Consequently, by
Corollary 1, we have the inequality »(A) > n-+k-+1. Thus, applying
(i) to the set {b,, b,, ..., b} of independent elements, we infer that
there exist elements d,, d,, ..., d, in the algebra A such that d,, d,,...
veeylpybyy by, ...y br,, are independent. From (3), (4) and (5) we obtain
the equation

(6) f(cl7 Coy eevy cn,fl(u‘(ln), w, ..., '“';cn)), ~~°7fk+1(usn)’ '“'(2")7 sy u;en)))

= 9(017 Cgy «vey cn,fl(u(ln)y ugn)f ceey us‘n))’ "°’fk+1(u(1”)7 ugn)’ ceey u},”))).

By the independence of ¢y, ¢y, ..., Cu, wi™, ul™, ..., uf it follows
that (6) will be preserved if we substitute for ¢,, ¢,, ..., ¢, the elements
d,,dy, ..., d, and for u{™, u{™, ..., uf” the elements a,, a,, ..., a;. Then,
by (2), equation (6) passes into equation

Fdyy dyyoevynybyyboyenny biyy) = g(dsy doyevey @ny by, by, oy Biy)

which, by the independence of d,, d,, ..., d,, b,, b,, ..., bx,, implies the
identity f = g. Thus, for every n, the elements c,, ¢, ..., ¢, u{™, u{™, ...
.ov, uy are independent in the algebra 2. Hence, in particular, it follows
that the elements ¢,, ¢;,... from € are independent in the algebra U.
Consequently, by Lemma 1, the subalgebra € is not finitely generated
which contradicts (1). The Lemma is thus proved.

LeEMMA 3. If the elements a,, a,, ..., a, belong to a subalgebra B of A
with y4(B) = n =1 and are independent in W, then they generate B.

Proof. By Lemma 2, 4 (8B) = n. Consequently, by (ii), the sub-
algebra B has an n-element basis by, b,, ..., b, consisting of elements
independent in A. By (i) the set {b,, b,, ..., b,} can be extended to a basis
{b1, byy ..., by} v C of the algebra U.

First we shall prove that the set {a,, a,,...,a,} v C consists of

independent elements. Let f,,f,,...,f. be these algebraic operations
for which

(7) a; = fi(byy bsy ...y b)) (1 =1,2,...,n).
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By (i) the set {a,, a,, ..., a,} of independent elements can be extended
to a basis {a,, a;, ..., a,} v D of A. By Lemma 2 and Theorem (iv) in [1],
we have the formula
(8) cardC = card D.

Let ¢,,¢5y...,cneC and, for some algebraic operations f and g,
(@1, Qyy eniy@uyCryCoyoneyCpn) = g(Byy By eony By Cry Cay vy Cp). Substitu-
ting (7) into the last equation we obtain

(9) f(fl(bu bayoeeybn)y ey fu(byy bayounyby), €1y Cqy ..t c'm)
= g(f1(B1s bay ooy bn)y ooy fa(byy bay ooy bn)y €1y Cay oty Cmi).

From the independence of by, by, ...,b,, ¢y Cay...,Cp it follows
that (9) will be preserved if we substitute for ¢,, ¢;, ..., ¢, some elements
d,,dy, ..., d, from D. This substitution is possible by virtue of (8) and
leads, according to (7), to the equation

flay, gy einy@nydyydoy..ydy) = (a1, Qzy vy Gy dyydyy.oonydy).

Now, taking into account the independence of a,, a,, ..., a,, dy, d,, ...
eeeydm, we get the identity f = g. Thus the set {a,,a,,...,a,} v C
consists of independent elments.

Now we shall prove that it is a basis of U. Suppose the contrary.
By (i) there exists an element d in the algebra A such that the elements
of the set {d, a,, a,, ..., a,} v C are independent. Since the set {b,, b,, ..
«e.y by} v C is a basis of A, we can find elements v,, v,, ..., ¥, in C such
that deC(by, byy ...y byy V4, Vgy ..., ) = €. Evidently, y4(€) <n+p. On
the other hand, the subset {d, a,, a,, ..., ay, vy, v5, ..., vy} of the carrier
of € consists of independent in A elements. Thus 4 (€) > n+ p+ 1 which
contradicts Lemma 2. Thus the set {a,, as, ..., a,} v C is a basis of 2A.

Let g, gz, ..., gn and w,, w,, ..., w,; be these algebraic operations
in A and elements of C respectively for which

b?' = gi(au Aoy oy Qpy Wyy Way ..oy wq) (.7 = 17 27 ceey n)
Hence and from (7) it follows that
(10) b5 = gi(f1(brybay ey bu)y oony fu(bry bay ouvy ba)y way Wy, ... wy)
y=1,2,...,n).
From the independence of b,,b,,...,b,, w,, w,, ..., w, it follows

that (10) will be preserved if we substitute for w,, w,, ..., w, the element
a,. Consequently, by (7),

bj = gj(al’ a2’ LS ] an, al, a]’ ey al) (j == 1,2, ceey %)

which shows that the elements a,, a,, ..., a, generate the subalgebra B.
The Lemma is thus proved.
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LEMMA 4. If y4(B) =n > 1 and the elements a,, a,, ..., a, generate
the subalgebra B, then they are independent in .

Proof. By (ii) and Lemma 2 there exists an n-element basis b,, b,, ..
eeey by of B. Let f,,fs,...,fn be these algebraic operations for which

(11) by = fi(ay, @gy ...;a,) (3 =1,2,...,m).
Put )
(12) ¢ =Jfi(byy bay ...y bn) (1 =1,2,...,n).

By a Marczewski’s theorem ([1], p. 60) the elements ¢, ¢c,, ..., ¢,
are independent in U and, consequently, by Lemma 3, form a basis of
the subalgebra B. Taking into account the representation

(13) bj = gi(1y Cay -.cy ) (J=1,2,...,m),

where ¢,, g,, ..., gn are algebraic operations, we have, by (12), the equa-
tion

(14) b, = gi(fl(bn bay vy bu)yvey fulbyy by oony bn)) (J=1,2,...,m).

From the independence of b,,b,,..., b, it follows that (14) will
be preserved if we substitute for b,, b,, ..., b, the elements a,, a,, ..., a,.
It follows from (11) that, after this substitution, (14) passes into the
equation

a’?'=gf(b17b21---abn) (j=1729°'°”n)-

Hence and frem (13), by virtue of a Marczewski’s theorem ([1],
p. 60) we get the independence of a,, a,,..., a, which completes the
proof.

Proof of the Theorem. Suppose that the algebra A has properties
(i) and (ii). Let a be a self-dependent element of . By Lemma 4 the
inequality vy (C (a)) >0 would imply the independence of a. Thus
Vat (C(a)) = 0 and, consequently, a is an algebraic constant in Y. Condition
(*) is thus proved.

To prove condition (**) let us suppose that the elements a,, a,, ..., a,
are independent in % and the elements a,, a,, ..., a,, a,,, are dependent
in Y. By Lemmas 2 and 4 we have the formula yy (C(al, By ovvy Onyy)) = M.
Hence and from Lemma 3 it follows that the elements a,, a,, ..., a,
generate the subalgebra C(a,, a,, ..., a,,,) which implies the condition
(**). Thus A is a v*-algebra.
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