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Abstract. We consider in this paper the approximate solutions of a class of ini-
tial-boundary value problems for the equation

0] Au+w =f,

where A is a linear elliptic differential operator of order 2m in space variables, with
time-depending coefficients. We start with a weak formulation of the exact problem,
which yields a linear system of equations for finding the approximate solution. Then
it is proved that the estimation of the error may be reduced to an approximation
problem in suitably defined Sobolev-type space. In particular, we may look for approxi-
mate solutions which are piecewise polynomials in both space and time variables.
In this manner we are led to a finite element method based on a triangulation of the
space-time domain in which equation (1) is considered.

1. Basic definitions and assumptions. We denote
ou 0 . o o
L D, = a—mj, D = Dy ... Dyn
with ¢ = (a3, ...y @,) and [a|] = a;+ ... + e, for arbitrary non-negative
integers a;. For ¢ = (2,, ..., ®,) € B", t € R, we write 2’ = (z,, ..., 2,_,),
and (z, t) for a point of R"*!. All derivations in the sequel will be under-
stood in the distributional sense. For simplicity we suppose all fune-
tions considered to be real-valued.

Equation (1) will be considered in a bounded domain D, of R"*!
satisfying the conditions:

(C,) 8Dy = Q,uB,UT, where Q,, 2, are two domains in the planes
t =0, t =T, respectively, and I' is the part of dD, lying in the strip
o0<i<T.

»
(C;) There exists a finite covering I' = ,L{ U, and positive numbers

a, B, y;, 0; such that the set I'n U; may be described in a suitably given

u¢=
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a-coordinate system in R™ by the equation

&, = ‘Pj(a/",: ) ((@,1)e Aj))
where
(i) 4; is the cube: |z|<a (s =1,...,n—1), y;<I< d;;
(ii) ¢; is Lipschitz continuous in 4;

(iii) the set {(=,?): (o', %) € 4;, ¢;(2", 1) < @, < ¢;(z", 1)+ B} is con-
tained in Dgy;

(iv) the set {(x,?): (2",1) € 4;, ¢;(a", 1) — B < &, < g;(2’, 1)} i outside
of Dy.

We denote by ( , )o, (j = 0, T) the scalar product in L*(£2;). For
the scalar product in L*(D,) we write simply ( , ). In the sequel we shall
use the following Hilbert spaces (given a positive integer k):

H,, = {ve L*(Dy): Dzv e L’(Dy), la| <k},
H, = {veHy,: v, e L*(Dyg)}

with the corresponding norms || ||, and || |, defined by the scalar prod-
ucts

(u, o = D) (Dgu, D3o)

lal<<

o=

and
(%y V) = (Wy V)peo+ (Ugy V),

respectively. Assumptions (C,), (C,) yield the following well-known lemmas
(see [6]):

LEMMA 1. For v € Hy, , the trdce v\ is well defined and
Wl rllz2 ) < ¢l -
LEMMA 2. For v € Hy, the traces v(+, 0), v(+, T'), are well defined and
max(ll'o(-, 0)".52(90); o (-, T)”Lz(ﬂz')) < ¢|lly,; -

In both lemmas ¢ denotes a positive constant not depending on v.
Now we can introduce for u,v € H,; the scalar product

[, 0], = (%, V) +{u(-, 0), v(-, 0))a, +(u(:, T), 2(-, T))g,
and the corresponding norm |} {|,. We define also
Hy, = {veH,: o(-,T) = 0}.
As regards the operator 4, we suppose that it is of the form

2) Au= D' (—1)"D3(as(x, ) Diu)
|al,|Bi<m
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with measurable and bounded in D, coefficients a,,. In the sequel we shall
consider its bilinear Dirichlet form

(3) a(u,0) = 3 (asDiu, Div).
lal,|1fl<m

Let C2,(Dy) be the set of all infinitely differentiable in D, functions
which vanish in some neighbourhood of I". To describe formally the bound-
ary condition on I' we introduce a linear subspace V of H, , containing
the set C5%(Dy) and we make the following assumption:

(C;) The form a(-, *) is coercive over the space V; this means that
there are two constants ¢ > 0 and 4 > 0 such that the estimate

a(v,v)+i(v,v) = ¢ ”'v”gz-n,o
holds for ve V.

Condition (C,) is obviously satisfied if I" is a polyhedral surface,
so that D, is a polyhedron. We give now some examples to illustrate
condition (C,).

ExAMPLE 1. Let V be the closure of Cg,(Dy) in H, , and suppose
that A is elliptic, uniformly in D, with continuous coefficients a,; (|a}
= |f| = m). Then (C,) follows from the well-known theorem due to L.
Géarding [2], [6]. According to Lemma 1 the space V consists of functions
v e H,, , for which the derivatives Dzv (|a| < m —1) vanish on I" almost
everywhere with respect to the surface measure. So v satisfies on I" homo-
geneous boundary conditions of Dirichlet type in a slightly generalized
form.

ExXAMPLE 2. Let m = 1 and V = H,,. Then (C,) holds if we suppose
that A is elliptie, uniformly in Dj.

2. Formulation of the exact problem. Let us introduce for v, € H,,
the bilinear form

B(u,v) = a(u,v)—(u,'v,)-{-{u(-, T, (-, T))9T+ fwvcos'vdo’,
r

where » denotes the angle between the positive #-half axis and the outside
normal to I" (according to (C,) it exists on I" almost everywhere, see [6]).

We formulate our initial-boundary value problem in the following
weak form:

(P) Find an % e V satisfying for all v € V n Hy, ; the identity

(4) B(u,v) = (uo,v(-,O))go—]—(f, v)
with given %, € L*(Q,) and f e L*(D;).

In the sequel we denote by I, (v) the right-hand side of (4).
The above formulation is justified by the following
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PROPOSITION 1. Suppose u € H,, ,. Then u is a solution of (P) if and
only if it satisfies the differential equation

(5) Autu, = f
in Dy together with the initial condition

(6) %u(+y 0) = %
and boundary conditions

(by) ueV,

(b2) (Au, v} = a(u, v)

for all ve VnH), ,.
Proof. Identity (4) with v € (3°(Dp) yields

(7) Au4-u, = f.

So Au e I*(D,). After integrating by parts the scalar product (u,v,)
we obtain from (4)

(8) a(u, 9)+(u(+y 0), (-, 0)a, = (Au, v)+(uo, v(-, 0))q,
for v e V nH,,,; this yields for v e C°(Dy)
(9) a(u,v) = (du, v).

The last identity remains valid for » € C5°,(D;). To see this it suffices to
replace v in (9) by v, = n,(f)v, where 7, € 02((0,T)), 0 <7, <1 and
n = 1 in [1/k, T—1/k]. Then v, — v in | ||, o-norm and one may pass
to the limit in (9). If, in particular, v(-, T) = 0, then subtracting (9) from
(8) yields

{10) (u(-,O),'v(',O)),,O = (u’o,”(',o))'

As it can be easily shown that »(-, 0) may be an arbitrary function in
0P (82,), identity (10) yields the initial condition (6) and so (b,) follows
from (8). Thus we have shown that each solution of (P) solves the initial-
boundary value problem formulated in our proposition. The converse
statement can be easily proved, by taking the IL*(Dj)-scalar product
of both sides of (5) with » e VN H),, and integrating by parts with re-
spect to t.

Remark 1. We explain the meaning of condition (b,) for the spaces
¥V considered in examples given in Section 1. In Example 1 condition
(b,) is automatically verified, it follows simply from the definition of the
derivation with respect to 2 in the sense of distributions. In Example
2 let ns suppose that I', the solution # and the coefficients a,, are smooth

N
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cnough. Then integration by parts shows that « satisfies the homogeneous

L. Ou ) . )
Neumann condition el 0, where 7 is the vector conormal to I' with
0T ir

respect to the operator A. So (b,) may be viewed as a kind of “natural
boundary condition” on I

Remark 2. Suppose that for each a e C*([0, T])

(this is obviously satisfied in the above two examples). Then introducing
in (P) the new unknown function # — ¢ *u we are led to the bilincar
form @ ( , ), which is positive-definite on V. In the sequel we shall suppose
that (C,) is true and that (C,3) holds with 2 = 0.

In the sequel of this paper we shall suppose that one of the following
assumptions is satisfied:

(C;) cosy = 0 on I' (in particular, D, may be a cylindrical domain,
then cos» vanishes identically on I');

(Cs) V is the closure in H,,, of C3°.(Dy) (see Example 1).

We have the following

PROPOSITION 2. B( , ) is positive-definite on the set V nH,, | equipped
with the norm ||| |, -

The proof follows immediately if we apply the Green formula to the
scalar product (v, ;).

ProprositioN 3. Problem (P) is solvable.

The proof goes in a standard way. For fixed » e VN H),, the linear
functional V > w — B(u, v) is bounded in the norm || |, ,, and so, according
to the Riesz theorem, it may be represented as

(12) B(u, v) = (%, S0)p,0,

where §: V nH),; — V. Puting v = v and applying Proposition 2 we get
(13) N1 [ < €1 18]y, -

Then it follows from (13) that

]lf,uo ('v)[ < 02 ”S’U”m,o;

so that 8v —1,, (v) is a linear functional bounded on the range of 8.
Extending this funetional to the whole space V (equipped with the norm
of H, ;) and applying once more the Riesz theorem we obtain

(14) g (0) = (T S0)png
with some % e V, which is the desired solution, according to (12), (14).

12 — Annales Polonicl Mathematici XLII
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3. The approximate problem. We are going to approximate the
sufficiently smooth solutions of (P), namely those belonging to H,, ,. For
such «# we can reformulate the exact problem as follows:

PROPOSITION 4. If weH,, is a solulion of (P), then it is unique
and (4) holds for all ve VnH,,.

Proof. Let n, be as in the proof of Proposition 1 and we VnH,,,.
Then #,(t)we VN H), , and tends to w in the norm || ||,,; therefore
(b,) is valid with v replaced by w. So the second part of our statement
follows after integrating by parts the scalar product (u, v,) and applying
Proposition 1. The uniqueness of « is now readily proved using Proposi-
tion 2.

Let now W, be a finite-dimensional subspace of Vn H,, ,. We formu-
late the approximate problem as follows:

(P,) Find a u, € W, such that for all ¢ € W, the identity

(15) B(up, @) = lpuy(9)
holds.

PROPOSITION 5. Problem (P,) has a unique solution.

The proof follows directly from Proposition 2 after applying the
lemma of Lax—Milgram (see [1], [6]) to form B( , ) and functional lf_uo
considered on the space W, (note that on the finite-dimensional space
W,, the two norms || ||, and || |, aTe equivalent).

We now pass to the estimation of the error. Subtracting (15) from
(4) with v = ¢ yields

(16) B(u —uy, ) = 0;
therefore
(17) B(u—up, u — %) = B(u—uy, u —9)

with arbitrary ¢ € W,. Identity (16) is an analogue of the principle of
orthogonal projection known in the case of a selfadjoint elliptic problem.
Applying Proposition 2 to (17) we obtain

(18) dy [llu —uy |1 < B4 — %y, u —9);
but
(19) |B(% —tp, u—@)] < dy |1 — U] ||y 1% — @llpn, 2

with positive constants d; depending on the coefficients of A and the domain
Dy. Now (18), (19) yield

(20) e — 243l < Ay ink [l —ll,y

¢eWp,
and in this manner we are led to the approximation problem in the space
H,, ,. Estimate (20) is an analogue of the Céa’s lemma in elliptic problems

(see [1]).
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We discuss more detailly the case m = 1. Assuming that D, is a poly-
hedron let us consider a regular family {T,} of its triangulations and let
W, be the corresponding finite element space of Lagrange type [1], [8].
Using the known properties of finite element approximations in Sobolev
spaces we obtain from (20) the following

PRrROPOSITION 6. Suppose that

(i) for each K € T, the restriction of W, to K contains all polynomials
of order <,
(ii) w e H, ,(Dy) with r > (n—1).
Then
e —uzlll, = O(R)

where b denotes the maximal diameter of the triangulation T).

4. Final remarks. Internal approximations of parabolic problems
in a cylindrical domain £ x (0, T') have been investigated by many authors
(see [71, [9], [10], [11], where other refercnces are given). The usual way
is as follows: to choose a family of triangulations of the space domain 2
and look for an approximate solution # such that for fixed ¢ the function
(-, t) should belong to a corresponding finite element space X. Denoting
by {e;}{_, the basis in X and putting

N
Wz, 1) = 2 u(t)e (@) (ve Q)
j=1
we are led to a system of ordinary differential equations for the unknown
functions u;. So the second step is to solve approximately this system.
This is usually done by difference methods and one obtains finally an ap-
proximate solution of the considered problem as a function, which is
piecewise constant, and therefore discontinuous, with respect to ¢ [7].
The method proposed in this paper yields approximate solutions in
the form of spline functions with respect to all the variables z and ?. The
assumption of the regularity of the family {I,} means, roughly speaking,
that the time step tends to zero with the same order of convergence as
the space step.
Taking for ¢ in (15) the basis functions in the space W, we are led
directly to a system of linear equations, which gives the coordinates of
the approximate solution u, in the considered basis.
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