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On I*-estimates for solutions of the Cauchy problem
for parabolic differential equations

by P. BEsArA (Gdansk)

In the present paper we deal with a system of second order semi-
linear parabolic equations in an unbounded zone and prove theorems
on estimates in I”-norm for the difference of golutions of the Cauchy
problem and for the solution itself. Theorems of this kind for linear
systems of even order, parabolic in the sense of Petrowskii, can be found
in Eidelman’s monograph [3]. However, they are derived there from prop-
erties of the fundamental golution and, consequently, they require
assumptions ensuring its existence. We do not make use of a fundamental
golution; our method is patterned on that applied in [1] and [2] and
require weaker assumptions. In particular we assume a weak parabolicity
instead of the stronger one following the Petrowski’s definition. Moreover,
the coefficients of the equations are allowed to approach infinity whereas
in [3] they were assumed to be bounded. The Holder continuity of the
coefficients assumed in [3] is not needed here but, on the other hand,
since we make use of the adjoint operator we have to assume the coef-
ficients to have suitable derivatives.

As a consequence of the result obtained here one can get a theorem
on continuous dependence of golutions (in IP-norm) on the initial data
and on the non-linear terms appearing in the "equations. This implies
in tern some uniqueness theorems similar to those of paper [2].

Denote by @ = (%y,...,®,) points in n-dimensional Euclidean
space &" (n>1) and by ¢ points of the interval {i,,%;>. Let § = (1,
1) X 6" 8 = {1y, 1) X &" Define the differential operators

n
: ”
Fiyt =

-

n
A by @)U, + D) VF(E, )i
j=1

Folo=
We shall treat the following systems:
1) u = Lo+t @, u)

. : , =1, ... i, w)el.
(2) o = L'+t (e, @, v) (F=1y.ym), (1 @)
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A vector-valued function wu(3, v) = {u'(i, »),..., ™, #)} will be
called a solution of system (1) (or (2)) if the components «*(Z, ») are con-
tinuous in § and their derivatives appearing in (1) exist at each point of
S and satisfy system (1) (or (2)). The derivatives are assumed to be
integrable in any finite cylinder Sp = (%o, t1) X (j2| < R).

We make the following preliminary assumptions:

(A;) the coefficients af, b} and their derivatives (a,}k)wf, (i), (a}‘k)mk,
(b)), are measurable and bounded in any finite cylinder Sp = (%,
8 X (|2| < B),

n .
(Ay) szla;k(t’ %) £,€,2 0 (1 =1, ..., m) for any real vector (&, ..., £,)
and for (t, x)ef,
(45) functions f*(t, @, u), g*(t,%,u) (4 =1,...,m) are defined for
(t, #)eS, w = {ul, ..., w"} arbitrary and satisfy the inequalities.
Y s m )
(£ (2, @, w)— g (¢, @, v)]sgn (u — o) < D) ci(t, @) [u* —o°| + Wi (2, o)
§m=]
(4 =1,...,m) almost everywhere in S, where k*(¢, 2) and c:(t, »)
are continuous funections in §, r¥(t, ) > 0, ¢, ) = 0 for s # i,
and 3 di(t, ») < ¢ = const > —1.
§=m]l
Let a(ty 2) = {w'(f, 2), ..., u™(t, @)}, D¢, @) = {P*(4, @), ..., D" (¢, 2)}
be functions continuous in § and &%(¢,2)>0 (¢ = 1,...,m). A function

w(t, ®) will be said to belong to the space L?(&™), 1< p < oo, with the
weight function @ (¢, #) if the norm

luy Mp,o =(2 f |“i(t;$)l”¢i(t,w)dm)”1’
i=1 7

iy finite for any te{t,, ).
Denoting by .#; the operator adjoint to Zi;

Fidt = 2 (i (¢, @) @i)mfzk — 2 (b, m) gpi)x,a
i Je==1 i=1

put

-~ ~, m
L' =L 0+ Y A+ (i =1,...,m).
§=1
TEREOREM 1. Let u = {w'}, v = {v'} be solutions of systems (1), (2)
respectively and let assumptions (A,) - (Ay) be satisfied. Assume there is
a vector funciion @ = (@} suoh that $*eC*(8), ®* > 0 in every compact
subset of § and

(3) L0 (i=1,...,m)
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almost everywhere in 8. Set

,w'i

y' = max ) |(af+ af) Pk, | + & [m;;xlam +max | ) (@bt ah)g, — b
7 Xk ] k
V=(@H. 9", h=(m..50"
and assume, moreover, that

]

51

1
(4) [ Iho(z, Npwdr< ooy [ fIh(z, )Bedr < oo,
ty to

Under the above assumptions if |w(ty, *)lp» 18 finite, then ||lw(t, )0
18 finite for any te(3y, t;) and we have the estimaie

(6)  max |w(t, )lpe
oot

p—1

—(c+1) (¢ —2p)

< ([l (toy *)llp, 0+ (tr—10)"” lzzﬂf:-lgllh(t, MNp,01e ?
02*1

or in a more precise form
(6) ity e
p—1

-1 t
(e+1)(t—2g) - — Yp
< lwte, Yipae? +( [ 1z, N 0r o0+ 1)
L)

for every telly, t).
Proof. Estimate (5) is an immediate consequence of (6), so we prove
(6). To this end we take advantage of the Green’s identity

M 3@ =X A Ee - Y oL )+

1
+ ;‘ ; i kZ O, — 2 ; (aky 7)oy + 0520,
which is valid for any functions z(f, #) = {*({, @)}, (i, ) = {¢'(%, o)}
having the derivatives occurring in operators .#i. The functions (¢, 2)
will be suitably chosen later on. In our case they will be smooth and

non-negative in S, with compact support as functions of » in #™ Then
integrating (7) over the strip (%o, %) X &%, te(ty, 1), yields

8) Y [dotdw

T &n
t
= 3 [0t e [ S0 ) o],
i é ty &n°7

Now we take in (8) 2! = (%')", where %' = [(w*)*4-¢]"*, e > 0. By
direct computation we get
Fid—d = (WPt (Lhwt — 1w0f) +p (@4 [(p — 1) () +¢] g at v .
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Hence, taking into account systems (1), (2) and their parabolicity
we find

Lid—d > —p @V | [t @, w) — g (t, @, v)]sgnos’.

Furthermore, agssumption (A,) implies

(9) Fid— > —p@P | Y | —p (@) |
S
From assumption ¢ > 0 for s 4 it follows

(10) D (@' | < Zo,(*i =" — e (w72

&

By Young’s inequality we have the relation

(11) (BP0 < l";—l(mwr %(W

which is frue for any 1< p < o. Note that for s =4, (11) turns into
the identity. We also have

(12) (P~ | B < (TP < 1’;1 (P + -i;(hi)”.

Combining (9), (10), (11) and (12) we get

(13) Zid—df> — Zc:z’ (p—1) (203+1)z (B + ep & ()P~

(i =1,...,m). These inequalities imply the relation

(14) 2 [4(Lig + o) — ' (Liet — )] < Z‘ (,svgqat+20 #* -+ i) +
+o=1 3 (3 1) ot 3 WPe—ep Jel@ .

From (8) we obtain, taking advantage of (14) and passing to the
limit as £ - 0,

(18) o (t, WBe < o ltey e+ (@ —1)(c+1) f ko (z, NE,pdv+

+ f I (zy B pdz+ f ko, )5 2,47,
Yo to

where .éfp {é‘q:, . émcp} Now we solve the integral inequality (15)
with respect to - ||wt ‘N3, (considering [w(?, -)|} g, a8 known). Hence
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(see [4] or [5])
16)  lw(t, B < lw(ty, *)|B,- P D+t

¢ 1
+ [z, NE g e® Dzt [ o (z, B g, - €I g,
t t .

Let us substitute in (16) ¢'(t, 2) = y®(2)®(t, ), where &° are the
functions occurring in assumption (3) and y% (), R > 1, is a function
of class C? (&™) such that y®(») = 1 for |a| < R—1, y®(») = 0 for |u| > R,
0 < y®(x) <1 in 6™ and Zl?’m,a:,,_.l ‘|‘2|7mjl is bounded in ™ by a constant

independent of E. We hswe
an S = yR.‘f‘(ﬁ—l-Z (0 + afy) 8 OL, +

+ ' {2 B Vo, + 2, 5‘ [Z (@ + a)a, — B3] 5

By assumptions (3), (4) and by (17) it follows that the upper limit as
R — oo of the last integral in (16) is less than or equal to zero. Thus
if we let R — co in (16) and then unse the elementary inequality (a--b)'?
< a0 (a0, b= 0, p > 1), we obtain the required estimate (6).
Now we introduce the assumption
{A;) functions f'(f, ,u) (¢ =1,...,m) are defined for (1, #)e8, u =
= (uly ..., w™) arbitrary and satisfy inequalities
m
fit, =, w) sgn (u ct(t, a)|u’| +1(t,2) (4 =1,...,m)
§=1
almost everywhere in 3, ¢! and A* satisfying the conditions specified
in agsumption (A,).
The following theorem is an analogue of Theorem 1 for the estimate.
of the solution itself.
THEOREM 2. Let w = {u’} ({ =1, ..., m) be a solution of system (1)
and let assumptions (A,), (A,), (Aq) be satisfied. Suppose functions O and ¥
to be defined as in Theorem 1. If, moreover,

31 2!
(18) [ iz, B wdz < o0, [ |(z, I ode < oo,
ty Yo

then estimates (6) and (6) hold true with w(t, x) replaced by (i, x).
Proof of Theorem 2 is similar to that of Theorem 1 except for few
-evident changes.
The following corollaries are some particular cases of Theorems 1
and 2.
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COROLLARY 1. Let u, v be solutions of systems (1), (2) respectively,
and let (A;) - (A,) be satisfied. Suppose that for some constants M,, M,, M,,
1> 0, the coefficients ag,, b satisfy the growth conditions

|l < M, (| +1)E-D2,
(19) | 3 (@t aby)ey, — 5| < Ma(laft + 1),
k
DOk )esm,— D) (B < My (Jf 1)
i 7
(G, b =1,...,m;% =1,..., m) almost everywhere in S = (t,,1,> X &", where

h—t <12

and
p =M, ER4+VnM,A+ (My/K), K>O.
Put
y =9n M KA(A—2|+1)+0
and défine
iy K (jo]2+1)" ot m
(20) D*(t, ) —exp{— pr— —v(t—1y)p, @ ={PD,...,0"}.

If, moreover,
31 21
(21) [ lw(z, NBppedr < 00 and [ ||h(z, B 0dr < oo,
1y b

where w = u—v, then estimate (6) holds true with @ defined by (20).

Proof. To deduce the corollary from Theorem 1 it is enough to
show that under assumptions (19), the function @ defined by (20) satisfies
(3) and the convergence of the firgt integral in (21) implies the convergence
of the first integral in (4). We omit the easy computational details.

Similarly one can derive the following

COROLLARY 2. Assume u is a solution of (1) and (4,), (A,), (A;) hold
true. Then (19) and (21) imply estimate (6) (4,—1, < 1/2u) with w(t, @)
replaced by u(l, w) and D defined by (20).
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