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ON SMALL STOCHASTIC PERTURBATIONS
OF MAPPINGS OF THE UNIT INTERVAL

BY

PAWEL GORA (WARSZAWA)

INTRODUCTION

We consider small stochastic perturbations of mappings from the unit
interval into itself (for more detailed information see [3]). The general setting
of the problem is as follows. Let I = [0, 1] and let 7: I — I be a piecewise
monotonic mapping of class C', ie. there exist 0 =by < b, < ... <b,_,
<b, =1 such that, fori=1,2,..., 4, Tleo; — 1.6 is a monotonic function of
class C' and, moreover, it can be extended to [b;_,, b;] as a C!-function,
which will be denoted by 1;.

Let m be the Lebesgue measure on I and let I! = I (I, m) be the space
of all m-integrable real functions on I. We denote by L. the subset of I!
containing all nonnegative functions f satisfying the condition | f(x)dx = 1.

With the mapping t one can associate the Perron-Frobenius operator
P,: I! - I! so that

L f(i'y)
(P.) (). i; ey Vb
where f(t;'y) =0 for yért;([b;_, b;]). It is well known that P,(L}) < L}
and P, f=f if and only if the measure fm is invariant under t. Let L(z)
denote the set of functions in L) invariant under P,.

For any positive integer n, we consider a family of probability densities
q"(x,*), xel, with respect to the measure m. The densities g" considered
below are bounded and measurable as functions of two variables. The family
of transition densities p"(x,*) = ¢"(t(x),"), n =1, 2, ..., with respect to m is
called a stochastic perturbation of the mapping t. It is called small if for any
r >0 we have

x+r

inf | q"(x,y)dy—>1 as n-o0.

xel x—-r

Perturbations considered in the sequel are small as they are local, i.e. for
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n=1,2,... there exists r, >0 such that q¢"(x, y) =0 for |y—x| >r,, and
r,—»0 as n— 0.

We define operators Q, and P,, n=1,2, ..., from L into itself as
follows:

@. N =[q"(x,y) f(x)dx, (P,/)) =[p"(x,y)f(x)dx, yel.

Here and throughout the paper we neglect the indication of the range of
integration if that range is the interval I. It is easy to see that P, =Q,0P,,
n=1,2,...

Under our assumptions the transition density p” (n =1, 2,...) has at
least one invariant probability measure u,, ie.

pn(A) = [ | p"(x, y)dy dp,(x)
A

for any Borel subset A of I. The measure y, is of the form u, = f, m, where
f,eL. and P,f, =1, (see [2]).

Our aim is to find the limit points of the set ju,: n=1, 2, ...} in the
weak topology of measures (u, — p<>pu,(g9) — u(g) for any continuous func-
tion g: I — R). Any such limit point will be called the limit measure for the
perturbation p" (n=1,2,..).

In the paper, we discuss mappings t from 3 different classes. In part I,
T is a piecewise monotonic mapping of class C? as in [4] and [5]. Our
results can be easily generalized to mappings t that are piecewise monotonic
and of class C' with |1/t| of bounded variation. Such mappings have been
considered by Wong [11]. In part II, 7 is a piecewise monotonic mapping of
class C!'*¢ as in [9].

The perturbations we consider are of two classes. Their definitions are
given in Sections I.A and LB, respectively. Perturbations of Section I.A are
connected with one of Ulam’s problems [10] (see Example 1.A.1).

The main result of the paper is the proof of the theorem that under our
assumptions the limit measures for small stochastic perturbations are of the
form fm, where fe L(r). This result may be understood as a stability of
absolutely continuous t-invariant measures under some classes of small
stochastic perturbations.

In the paper we use the methods analogous to those of Li [6].

The author is much indebted to K. Krzyzewski for suggesting the
subject and many inspiring talks.

I. PIECEWISE C*-MAPPINGS

In this part of the paper, T is a piecewise monotonic mapping of class
C?% ie. for i=1,2,..., g the function t; is monotonic and of class C2.
We shall use the following lemma from [5]:
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LemMma 1. For any fe L) and
K = (sup|t”)(inf|t’))" 2+ 2(inf|z')) " ( min (b;—b;- 1)) '
1<i<q
we have
Vo (P.f) < 2(inf|7') ™ Vo () +K,
where V?(g) is the variation of the function g on the interval [a, b].

I.A. “Average- like”” perturbations. In this section we claim that |7;| > 2
fori=1,2,...,q.

Let m,=4{I,, ..., I, mn; be a partition of I into closed intervals such
that I,;_,n1I,; is a single point (n=1,2,... and i=1, 2,..., m(n)). We
claim that

max m(l,;): i=1,2,...,m(n)} -0 as n—oc.

Let us define

(m(ln.i))_l fOI' X, yEIn.i,
0 otherwise.

q(m,)(x, y) = %

The definitions of p(=n,), Q(n,), and P(r,) are analogous to those of p,, Q,,
and P, in the Introduction (n=1, 2, ...).

Since Q(mn,) is an operator of conditional expectation, we call the
perturbations generated by ¢q(n,)’s average-like perturbations.

The main technical result of this section is the following

ProposiTION L.A. Let f, belong to L. and let P(n,) f,=f,forn=1,2, ...
Then the set {f,: n=1, 2, ...} is relatively compact in I} and its limit points
belong to L(7).

The proof of Proposition I.A is based on two lemmas.

Lemma L.A.l. For any positive integer n and for any fel' we have

Vo (@) f) < Vo ().
Lemma 1.A.2. For any fe ! we have Q(m,) f ~f as n— x in the L*-norm.
The convergence is uniform on relatively compact subsets of I!.

The proofs of Lemmas [.A.1 and 1.A.2 are analogous to the proofs of the
appropriate lemmas in [6].

Proof of Proposition LA. Let f,e L} be invariant for P(n,), where
n=1,2,... Since P(n,) =Q(n,)oP, by Lemmas I and [.A.1 we have

VOl (j;l) = Vol (P(TI,,) jn) = VOI ((Q (nn)(Pt j;l)))
< Vo (P f,) < 2(inflt)" Vo (f,)+K.

Hence V) (f,) < K(1—2(inf|t’)" ') ' for n =1, 2, ... Since ||f,l| .1 = 1 for any
positive integer n, we infer that ||f,]|.- (n =1, 2, ...) are uniformly bounded.
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Applying Helly’s theorem [8] we see that the set {f,: n=1,2,...} is
relatively compact in L.

Let f,, (i=1,2,..) be a subsequence converging to a function f in L
as i > o0o. We prove that fe L(r). We have

“Ptf_f”LI < ”Ptf_Ptfn,-”LI +”Ptfni—Q(nnl-)Ptfni”L1 +
FIQ () P foy—Fill 1+l foy =Sl

with all summands on the right-hand side being arbltrarlly small. Thus P, f
= f, which completes the proof.

The main result of this section is the following theorem, which is an
immediate corollary to Proposition 1.A.

THeoreM L.A. If, for any positive integer n, u, is a probability Borel
measure invariant for p(m,), then the limit points of the set {u,: n=1,2, ...},
in the weak topology, are of the form fm, fe L(t). Moreover, the convergence is
in the total variation norm.

Remark I.A. For mappings t considered in this part of the paper
Kosjakin and Sandler [4] and Li and Yorke [7] have proved that the set of
ergodic probability measures is finite and the support of any such measure is
a union of a finite number of intervals. Hence any absolutely continuous z-
invariant measure can be obtained as a limit measure for a perturbation
p(n,), n=1,2,... It is enough to make a suitable choice of the sequence ot
partitions =,.

Example LA.l. Choose nl={I,,, ..., I,,} with I,;=[i—1/n,i/n],
where i=1,2,...,n, and n=1, 2, ... Ulam [10] has defined an operator
P,(1): D,—» D, with D,=Span{y,;: i=1,2,...,n} in L' and yx,; the
characteristic function of the interval I,; as follows:

P,(0)(xni) = Z P;j xnjs

j=

where

m(l,,nt 1(I,; o
Py = | "’m(l..,.')( ,J))’ Lshisn.
Ulam has conjectured that if, for any positive integer n, f,eD, is invariant
for P,(t), then the L! limit points of the set {f,: n =1, 2, ...} belong to L(z).
Li has answered the conjecture positively for t discussed in this section (see
[6]). It is easy to check that for any positive integer n the operator P(n?) is
an extension of P,(r) to the whole I!. Moreover, P(n%) (L) < D,, and so
P(=?) f = f implies P,(t) f=f. Hence Proposition I.A is a generalization of
Li’s result.
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Example I.A.2 (see [1]). The example shows that for mappings 7 in a
very special class one can obtain an absolutely continuous inyariant measure
for 7 directly as an invariant measure for a stochastic perturbation.

Let T be a mapping of the unit interval I into itself for which there exist
0=bo<by <...<by—y <b,=1 such that 7|, _ 4, is a linear function,
t({bo, by, .., })c{bo,bl,. ., bg}, and v # 0. Letn—{l i=1,2,...,q}
denote the partition of I into intervals I; = [b;_,, b;] and let q(n), p(n), P(n)
be defined as above. The set

q q
D= {=21 & Xi- ‘;1 om(l)=1} -

is compact and convex in L (y; is the characteristic function of I,). For yel
we have

(P@x)») = (X p@)(x, yJdx = Y m(I; nt™ (1))
jdy=1j m(’j)

x5 ()

1 :
I IXt(l)(y) Pt(Xl)(y)’ l=1’ 2’“" q3

so P(n)p = P,|p and P(m)(D) = D. Hence there exists a piecewise constant
function fe D such that P, f= P(n) f=1.

I.B. “Convolution-like” perturbations. In this section we claim that
[t] >4 for i=1,2,...,¢q

Fix the sequence of positive numbers r, (n =1, 2, ...), monotonically
tending to zero, r; < 1/4. Let s": R—>R* (n=1, 2, ..) be an m-measurable
bounded function satisfying the following conditions:

(i) s"(t) =0 for |t| > r,,

(i1) s (—t) = s"(t),
(iii) j' s"(t)dt = 1.

We define a family of probability densities g" (n =1, 2, ...) with respect
to the Lebesgue measure m as follows:

n s"(y—x) for xe[r,, 1—r,],
7 y) = {s"(y—x)+s"(?—x) for the remaining xel,
where y = —y for ye[0, 1/4] and y = 1+(1—y) for ye[3/4, 1]. Let p" Q,,
and P, be defined as in the Introduction.

The perturbations generated by the probability densities g" are similar at
all points of I (except for the points near the ends of I). We call them
convolution-like perturbations (see Lemma [.B.1).

We shall prove the following proposition analogous to Proposition 1.A.
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ProrosiTiON I.B. Let f,, beIong to L', and let P,f,=f, for n=1, 2, .
Then the set |f,: n=1,2,...} is relatively compact in I} and its limit pomts
belong to L(7).

Before proving Proposition I.B, we give the following definition and
some lemmas.

For any f: I — R we define its extension /* R — R as follows:

f(—x) for xe[—1/4, 0),
f(x) for xel,
J) = f(1—-(x—1)) for xe(1, 5/4],
0 for the remaining xeR.

Lemma L.B.1. For any positive integer n and for any function fe I} we have

1+r,

@.N0) = [ fOs"(y—x)dx =(*s"(y), yel.

-rp

Proof. Let ye[O0, r,]. We have
Q.. )W) = [f(0)q"(x, y)dx

ytr, Ftr,
= | f(x)s"(y—x)dx+ | f(x)s"(F—x)dx
0 0
ytr, 0 y+rn
= [ f®s"(y-xdx+ [ J@s"(y—DdF = [ [(x)s"(y —x)dx.
0 y-ry y-ry,

The proof for ye[l—r,, 1] is analogous and for ye(r,, 1—r,) it is
trivial.
Lemma 1B.2. For any fel!, and for any positive integer n we have

Vo (2. ) < 2V5 ().
Proof. By Lemma I.B.1, Q, f=f*s" Fix a positive integer N and a
sequence 0 =1, <t; < ... <ty =1; we then have

N N
Y Q2 N =(Qu N (ti= )l = Z |(F*5") (t:) = (F*s") (1 )
i=1

gmmmwmmm

N n
=Y || s"Ofte;—ryde— j (0 f (ti-y — ) di|

i=1 —r,, —rn
_I (Zl =0 =T (s = 0)s" (1) de

IV”’" syt = V2™ < 208 ().

—r,
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LemMmA 1.B.3. For any fel! we have Q,f—f as n— oo in the L'-norm.
The convergence is uniform on relatively compact subsets of L.

Proof. Since for any positive integer n the operator norm of Q, is equal
to 1 and since continuous functions are dense in L, it is enough to prove
that Q,g —»¢g in ! as n— oo for any continuous function g.

We first prove that for any yel

[q"(x,y)dx=1, n=1,2,...
Let ye[O, r,]; we have

y+rn

[q"(x, yydx = | (s"(y—x)+s"(F—x))dx+ [ s"(y—x)dx.
0

Tn

Since
n 0 0
[s"G—x)dx= | s"(y—x)dx= | s"(y—x)dx,
0 —Tn y—rp
we have
y+r,I
[q"(x, pydx = | s"(y—x)dx =1,
y—rp

as desired. For ye[1—r,, 1] the proof is analogous and for ye(r,, 1 —r,) it is
trivial.
Hence -

J19() = (2.9 W dy = [ |lg»)—[ g(x)g"(x, y)dx|dy
<l —gx)g"(x, y)dxdy < || w(r,) g"(x, y)dxdy = w(r,),
where w is the modulus of continuity of the function g and w(r,) =0 as

n— oC.

We are now in a position to prove Proposition I.B. It is implied by
Lemmas I.B.2, 1.B.3, and Lemma I in the same way as Proposition I.A
follows from Lemmas [.A.1, [.A.2, and Lemma I.

The main result of this section is the following

THeoreM LB. If, for any positive integer n, u, is a probability Borel
measure invariant for p", then the limit points of the set \u,: n=1,2,...}, in
the weak topology, are of the form fm, fe L(t). Moreover, the convergence is in
the total variation norm.

This theorem is a direct consequence of Proposition 1.B.

Remark I.B.1. The assumption (i) can be replaced by a weaker one:

(i*) s"(t)=0 for |t| >1/4, n=1,2, ..., and for any r > 0

| s"(dt -1 as n—x.

-r

The proof remains almost unchanged.
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Remark I.B.2. Contrary to the situation discussed in Section I.A, there
are absolutely continuous t-invariant measures, which cannot be obtained as
limit measures for perturbations considered here. One can formulate the
following sufficient conditions for obtaining a measure m, < m as the limit
measure for a perturbation p" (n=1, 2, ..)):

(a) m; is t-ergodic;

(b) there exists an open set U osupm, such that every absolutely
continuous t-ergodic measure m, different from m; vanishes on U;

(c) cl(tU) = U, i.e. suppm,; is an “attractor”.

For the proof note that, by (c), for n large enough there exists a measure
U, invariant for p" and concentrated in U. We know that any limit point of
the set {u,: n=1, 2,...} (in the weak topology) is an absolutely continuous
invariant measure for t. From (a) and (b) it follows that any such limit point
equals m,.

We believe that condition (c) is necessary for obtaining m; as a limit
measure, but we have no proof of that.

To illustrate the above remarks, we give two examples (see Figs. 1
and 2).

1/2+d

1/2 1/2

1/2 1/2
Fig. 1 Fig. 2

For 7 of Fig. 1 there are two ergodic absolutely continuous probability
measures: m; = 2m|, 1,2 and m, = 2m|;,,, ;,. For any positive integer n the
only invariant probability measure for p" is m = im, +im,.

For © of Fig. 2 there are two ergodic absolutely continuous probability
measures: m; = 2m);o 1/,; and m, with support in [1/2+4, 1]. For any n such’
that r, < /2 there exists only one invariant probability measure p, for the
transition density p”. Since y, ([0, 1/2]) = 0, we have u, > m, (n — o0) in the
weak topology.

Remark I.B.3. The results of Sections I.A and I.B remain true for t
considered by Wong [11], i.e. T piecewise monotonic and of class C! with
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|1/7’| of bounded variation, if we claim in addition that inf|t’| > 3 in Section
I.A or inf|t| > 6 in Section I.B. The only change in proofs is replacing
Lemma I by an analogous one from [11].

11. PIECEWISE C'**-MAPPINGS

In this part we discuss small stochastic perturbations of piecewise
monotonic expanding mappings t of class C'*¢ ie. for any i=1,2,..., ¢
the mapping t; satisfies the Holder condition with a constant « and an
exponent ¢. We claim that inf|tj] > A > 1, i=1, 2, ..., q. The existence of
absolutely continuous invariant measures for such mappings has been proved
by Wong [12] under some additional very restrictive conditions and,
recently, without any supplementary assumptions by Rychlik [9].

For functions from I! Rychlik has introduced a quantity C, which for t
piecewise of class C!*¢ plays an analogous role to that of the variation V;
for © piecewise of class C2.

It is worth noting that Rychlik’s method applies to expanding mappings
7 for which the modulus of continuity w of 1} (i =1, 2, ..., q) satisfies the
condition

sup w(6/A)/w(d) < 1.

6>0
The results of this part can be easily generalized to small stochastic pertur-
bations of such mappings.

Now we claim additionally that (A)"*+4(4)™' < 1. Let us denote by g;
(j=1, 2, ..., q) all different points t;(b;—,), t;(b;)) i=1, 2, ..., q). Let 05 >0
satisfy the following conditions:

() D +4(D) ' +a@S (DT " < 15
(i) intervals [a;—d,, a;+0,] for j=1, 2, ..., § are disjoint;
(iii) 69 <§ min (b;—b;_,).
1<5i<q
For fel we write

A(f, 0, x)= sup_ |f(x)=f (Y

jx—yl <o

and
C.(f)= sup (8¢ [ A(Sf, s, x)dx.

0<d8<4g
Then C, is a seminorm on the subspace of ' composed of all functions f
such that C,(f) < co. Any subset of !, bounded in the seminorm C, is
relatively compact in L'. We shall prove this for a countable set {f,el’,:
n=1,2,..}.

6 — Colloquium Mathematicum XLIX.1
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If w, is the integral modulus of continuity of the function f,, then for
0 < do/2 we have

0, (0) = [ 1 /a6 +2)—f, (0 dx < [ A(f,, 26, )dx < C,- 2 &,

where C, =sup{C,(f): n=1,2,...}). Thus the functions f, (n=1, 2, ..)),
uniformly bounded in the I!-norm, have also a common integral modulus of
continuity. Hence they form a relatively compact set in L.

Now, we recall two lemmas from [9].
Lemma IL.1. For any fe ! we have

Co(P f) (A7 +447 +ad5 A ") C.(N)+
+@A™ T 4+ 247 00 S N1 -

Lemma I1.2. If fe ! and x, y belong to an interval J such that m(J) = ko
for some positive integer k, then

IS ()—f W) < (2/9) 5 A(f, 9, x)dx.

IILA. “Average-like” perturbations. In this section, for t as above we
consider small stochastic perturbations of the type discussed in Section 1.A.
Let =,, q(n,), p(n,), Q(n,), and P(m,) be as in Section LA.

Lemma I1.A.1. For any fel!, and for any positive integer n we have
C.(Q(ny) f) < 18C, ().

Proof. Fix a function fel, and a positive integer n. We put g
= Q(n,)f. The function g is constant on -€lements of the partition x,. On any
such element the value of g is equal to the mean value of the function f on
this interval.

Fix 6 < J, and consider intervals I, = [(i—1)d,id] for i=1,2,..., w
and I,,, =[wd, 1], where w = E(6~!). Moreover, assume that I, = @ for
i¢{l,2,...,w+1}.

Let

O(h,J) =suph—infh
J J
for any interval J and any function h from L), . For xel;,i=1, 2, ..., w+1,
we have
A(g, 0, x)<0(g, I;-y VI; U I;1y).
Thus

w+1

fAg,8,x)dx <6 Y 0(g, ;- UL ;Ul,).
i=1

The sets I,_, I, ul,,, (i=1,2,...,w+1) cover the interval I =[0, 1] at
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moét three times. They form three families, say F,, F,, F;, that cover or
almost cover I. We consider the first of them. Let F, be the family of
intervals

J;i=[(2+3(G-1)8, 2+3)8]1nI, j=0,1,...,W.

We assume the worst possibility, i.e. that F, is a covering of I (W = (w—1)/3
is a positive integer). Let j, <j, < ... < j,, ji€{0, 1,..., W}, i=1,2,...,k,
be all indices j such that j =0 or j = W or the function g is not continuous
on the interval J;. Of course, we have

—oO(g, Jj) = 2 0@,J).

j=j1----’jk

J
Define sets
4= U J, fori=1,2,... k.
Ji-1Sisii+1
There exist points x;, y;€A; (i=1, 2, ..., k) such that
f(x;) < infg < supg <f(y).
le. le.
Thus O(g, J;) <O(f, 4), i=1,2,..., k. Using Lemma IL.2 we obtain the
estimate ' '
0(g,J;) < O(f, A) <(2/9) | A(f, 3, x)dx
A;

for i=1,2,...,k—1. ¥or i = k there are three possibilities:

(1) x, yx€ A, N[0, wé]; then the estimate analogous to the above one is
true;

(ii) exactly one of the points x;, y, (say x,) belongs to the interval
[wé, 1]; then

0(g,7;) <1f () =Sl < 1S () —f(Wo)l +1f (wd)—f ()

< (2/6) 13:5 A(f, 0, x)dx+(2/8) |  A(f, 9, x)dx;

Apn[0,wd]

(i11) both of the points x,, y, belong to [wd, 1]; then
1 1
0(g, J;,) < (2/9) [ A(f, 6, x)dx+(2/0) | A(f, 9, x)dx.
1-9 1-4

In any of these cases, the sets we integrate over cover the interval I at
most three times. Hence

; 0(g, J) <3(2/8) [ A(f, 8, x)dx.
=0

J
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Since for F, and F, the analogous estimates are true, we obtain
[ A(g, 6, x)dx <3-3-2 [ A(f, 6, x)dx.

Hence C,(g) < 18 C,(f), which completes the proof.
Lemmas II.A.1, II.1, and 1.A.2 imply the following

THeoREM IILA. Let t be as described above. If 18(A”+417') <1, then
the analogues of Proposition 1.A and Theorem 1.A are true.

ILB. “Convolution-like” perturbations. In this section we discuss, for 7 as
above, small stochastic perturbations of the type considered in Section 1.B.
Let r,, 5", q", p", Q,, and P, be as in Section 1.B.

LemMa ILB.1. For any fel!, and for any positive integer n we have

C.(2.f) < 2C.(N)-
Proof. Since Q, f=f*s"=s"+f, for any é <, we have

[ A@Q.f. 9, x)dx—f sup | j (Fx—0—7(y—1)s"(¢)dt| dx

[x=yl <& —r,
1+r,

< I fAF o, x—tdxs"(dt < [ A(f, 8, x)dx.

Condition (iii) on §, implies d, < 1/6, so we obtain

A(f, 6, —x) for xe[—1/4, 0),

A(f, 5, x)={ A(f, 9, x) for xel,
A(f, 8, 1—(x—1)) for xe(1, 5/4).

Thus C,(Q, f) < 2C.(f).
Lemmas I1.B.1, II.1, and I.B.2 imply the following

THEOREM IL.B. Let 1 be as described above. If 2(A™¢+44" 1) < 1, then the
analogous of Proposition 1.B and Theorem 1.B are true.

HI. CONJECTURES

At the end of the paper we formulate two conjectures.

Consecturi 1. (P 1280) If there exists a positive integer k such that the
mapping t* belongs to one of the classes discussed in the paper, then the
analogues of all our propositions and theorems are true for the mapping .

ConsecTure I1. (P 1281) Let for any positive integer n the mapping
q": I xI - R* be a measurable bounded function and let for all x, yel

[ q"(x, y)dy = | g"(x, y)dx = 1.
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Then all our results are valid for small stochastic perturbations generated by
the family of densities ¢”, n =1, 2, ... (¢" discussed in the paper .are examples
of such densities).

Added in proof. A more general treatment of the problem can be found
in: G. Keller, Stochastic stability in some chaotic dynamical systems,
Monatshefte fiir Mathematik 94 (1982), p. 313-334.
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