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ON INVERSE QUEUING PROCESSES

Summary. If in a queuing process we interchange the interarrival
times and the service times, we obtain the inverse process of the original
one. In this paper we shall show that if for a single-server queuing process
we know the distribution of the maximal queue size during a busy period
and the distribution of the maximal waiting time during a busy period,
then we can obtain immediately the same distributions for the inverse
queuing process.

1. Introduction. Suppose that in the time interval (0, oo) customers
arrive at a counter at times 7,, 75, ..., Tn,... Where 0 < 7, < 7, < ...
eo. < T, < ... are random variables. The customers are served by a single
server who starts working at time # = 0. The successive service times,
X1y X2g --+3 Ans ---5 are positive random variables. The order of serving
is not specified. We suppose only that the server is busy if there is at
least one customer in the system.

We shall denote by &(t) the queue size at time ¢, that is, the total
number of customers in the system at time . £(0) is the initial queue
size, that is, the number of customers already waiting for service at
time ¢ = 0.

We shall denote by #(t) the waiting time at time ¢, that is, the time
that a customer would have to wait if he arrived at time ¢ and if the
customers are served in the order of their arrivals. #(0) is the initial wai-
ting time, that is, the occupation time of the server at time ¢ = 0.

Denote by g, the number of customers served during the initial
busy period, and by 6, the length of the initial busy period. If £(0) = 0,
then g, = 0, and if #(0) = 0, then 6, = 0.

For 0 <1 < k define

(1) P(k|i) = P{ sup £(1) < k|&(0) = i}

0<<i<f,

as the probability that the maximal queue size during the initial busy
period is < k given that the initial queue size is 4.



For 0 < ¢ < z define
(2) G(z|c) = P{ sup 7(t) < z|y(0) = c}

0<CI<0,
as the probability that the maximal waiting time during the initial busy
period is <« given that the initial waiting time is c.

Now we shall define the inverse process of the queuing process defined
before. Suppose that in the time interval [0, oo) customers arrive at
a counter at times 7y, },..., 7n,... where 7, = 0 and 7, = y1+...+ ¥n
(n =1,2,...). The customers are served by a single server who starts
working at time ¢ = 0. The successive service times are y7, xz, ..., yny ---
where yn = tn—Tn_1(n =1,2,...; 7, = 0). We suppose that the server
is busy if there is at least one customer in the system. This queuing
process is called the inverse process of the previous one. That is, we obtain
the inverse process of a queuing process if we interchange the interarrival
times and service times.

For the inverse queuing process denote by &*(f) the queue size at
time #. £*(0) is the initial queue size, that is, the queue size immediately
before ¢ = 0. The customer arriving at time ¢{ = 0 is not counted in the
initial queue size. Further denote by »*(t) the waiting time at time ¢
in the inverse queuing process. n*(0) is the initial waiting time (imme-
diately before ¢ = 0). The service time of the customer arriving at time
t = 0 is not included in the initial waiting time.

Denote by o, the number of customers served in the initial busy
period, and by 6; the length of the initial busy period.

For the inverse process we use the same notation as for the original
process, except that an asterisk is added. Thus we use the notation
(3) P*(k|i) = P{ sup £*(t) <k|£°(0) = i}

0<t<0)
(0 < ¢ < k) for the probability that the maximal queue size during the
initial busy period is < k if the initial queue size is ¢, and
(4) G*(z|c) = P{ sup *(t) < x|5*(0) = ¢}

0<t<0;
(0 < ¢ <) for the probability that the maximal waiting time during
the initial busy period is < « if the initial waiting time is ec.

2. Dual theorems. In this section we shall show that there are
simple relations between the distributions (1) and (3) as well as between (2)
and (4). We shall always suppose that

(b) P{sup |p1+...4+ gn— 70| = 0o} = 1.

1<n<oo

THEOREM 1. If 0 < ¢ < k, then
(6) P*(k|k—i) = 1—P(k|3).
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Proof. Define a stochastic process {d(¢), 0 <t < oo} in the follo-
wing way: 6(0) = 0 and 4(¢) changes only in jumps. A jump of magnitude

+1 occurs at times t = 7., T3y ...y Tny ... and a jump of magnitude —1
occurs at times t = 7, 75, ..., 75, .... Then evidently P(k|:) is the pro-
bability that 4(¢), 0 <t < oo, reaches the line 2z = —1¢ first without

touching the line z = k41 —4 in the meantime. P*(k|k—) is the proba-
bility that 6(t), 0 <t < oo, reaches the line 2 = k+1—¢ first without
touching the line 2 = — ¢ in the meantime. If (5) is satisfied, then é(?),
0 <t < oo, will sooner or later reach either 2 = —¢ or 2 =k+1—1
with probability 1. Hence P(k|i)-+P*(k|k—i) =1 which was to be
proved.

THEOREM 2. If 0 < ¢ < @, then we have

(7) G*(x|lx—c) = 1—G(x]|c).

Proof. Define a stochastic process {y(t), 0 <t < oo} in the follo-
wing way: x(0) = 0 and
(8) 1= 3 1

o<, <t

for 0 <t < oco. Then G(z|c) can be interpreted as the probability that
2(t), 0 <t < oo, intersects the line 2 = t—¢ first without intersecting
the line # = ¢+ — ¢ in the meantime. G* (x| — ¢) is the probability that
z(t), 0 <t < oo, intersects the line 2 = {4 x— ¢ first without intersecting
the line #z = t— ¢ in the meantime. If (5) is satisfied, then y(¢), 0 <t < oo,
will sooner or later intersect either 2 = f{—¢ or z = t+ax— ¢ with pro-
bability 1. Hence G(x|c)4-G*(x|z—¢) = 1 which was to be proved.

In the next two sections we shall give some examples for the appli-
cations of the above theorems. We shall suppose that 7,—7,_, (n =1,2, ...;
7, = 0) and y, (» =1,2,...) are independent sequences of mutually
independent and identically distributed positive random variables.

If
(9) P{pn =tn—7a} <1,

then (5) is satisfied and Theorem 1 and Theorem 2 are applicable.
We shall use the following notation:

(10) P{t,—1tn_, < a} = F(x),

(11) P{xn < x} = H(x),

(12) p(s) = f ¢~ dH (x),
0

(13) a = jowdH(w)



3. Queues with Poisson input. In this section we shall give direct
proofs for some theorems which have been found by the author [10].
(See also [11] and [12].)

Consider the single-server queuing process defined in the introduction
in the case when the interarrival times 7,—7,_; (n =1,2,...; 7, = 0)
are mutually independent random variables having the common distri-
bution function

1—e ™ if x>0,
(14) F(x) = ,

0 if <0,
and the service times y;, X2y .- Xny ... are also mutually independent
random variables having the common distribution function H (z). Further,
the two sequences {r,—7,_,} and {y.} are also independent.

In this process the arrivals form a Poisson process of density 4,

and the probability that exactly j; (j =0,1,2,...) customers arrive
during a service time is given by

(15) my =
0 ‘7!

The generating funection of =»; () =0,1,2,...) is given by

(16) n(z) = Y md = [ e FAH (x) = p(A(1—2))
=0 0
and (16) is necessarily convergent for 2| <1
THEOREM 3. For 0 < ¢ < k we have
(17) P(k|3) = i
Q
where
Qo” (2)
18 = =
(18) Q) = Zczk g

for |2| < 6 and & s the smallest nonnegative real root of
(19) n(z) = %.

If Aa <1, then 6 = 1 and if Aa > 1, then 6 < 1. @, is an arbitrary nonnull
constant.

Proof. Define the process {4(t), 0 <? << oo} in the same way as in
the proof of Theorem 1. If we measure time from a transition ¢41 — 4,
then independently of the past, the increments of the process {46(t), 0 <?
< oo} have the same stochastic behavior as the original process {d(?),
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0 <t < oo}. This implies that
(20) P(k|k—1i) = P(jlj—1i)P(k|k—j)

for 0 <¢<j<k. Since 0 <P(k|s) <1 if 0 <7<k, it follows that
P(k|i) can be represented in the following form

(21) P(k|i) = QQ’;:'

for 0 < ¢ < k where @, # 0 and Qx/Q, (k = 0,1,2,...) is a nondecreasing
sequence.

If we take into consideration that during the first service time in
the initial busy period the number of arrivals may be j =0,1,2,...,
then we can write that

k

(22) P(k+ili) = D mP(k+ilitj—1)

i=o

for + > 0, k > 0. If we multiply (22) by Q,: and use (21), then we get
the following recurrence formula for the determination of @ (k¥ =0,
1,2,...): ‘

k
(23) Qr = Zﬂij.H_j (k=0,1,2,...).
j=o

If we introduce generating functions, we get (18).
We have explicitly @, = Qo/n, and for ¥ =1, 2, ...

(—1)"»! (7w, —1) 172 ... ;opk
(24) Qk+1=QoZT 2 : 1 : -y * .
To

o ) VRRL 7S RN PR |
U1tia .. +ig=y 1-%2 k
1)+ 289+... +kip=k

We remark that if Aa <1, then

v=1

25) lim @ =
(25) =1 T

that is, by choosing @, = 1—Aa we have lim @, = 1. If Aa > 1, then
llcl;m Qr/Qo = oo. e

If we consider any busy period other than the initial one, then

Qr_1
Qr

is the probability that the maximal queue size during the busy periodis
< k.

(26) P(k|1) = k=1,2,...)
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ExaMpLE. If, in particular, H(z) = 1—e * for z > 0, that is, the
service times have an exponential distribution, then

o 2

-t ~

W

for A # p and @ = Q,(k+1) for A = u.
In this case

(28) P(k|1) =

if 2% p and P(k|1) = k/(k+1) if 2 = pu.
Formula (28) has been found by S. Karlin and J. McGregor [6].
Note. First, we note that if la < 1, then

29) lim P{E() <k} =@ (k=0,1,2,...
t—>o0

where @, = 1— Aa. The limit (29) is independent of the initial state.
If Aa > 1, then lim P{£(t) < %k} = 0 for all k.
ts>00

Second, consider the queuing process studied in this section with
the modification that there is a waiting room of size m, that is, the number
of customers in the system is at most m+1. If an arriving customer finds
m-+1 customers in the system, then he departs without being served.
In this modified process denote by (, the queue size immediately after
the n-th departure. Then {{,} is an irreducible and aperiodic Markov
chain with state space I = {0,1,...,m}. Consequently the limiting
distribution lim P{{, < k} = P, (k = 0,1, ..., m) exists, is independent

N—>00

of the initial state and can be obtained as the unique solution of the follo-
wing system of linear equations

k
(30) Ppo= Y nPry (k=0,1,...,m—1)
i=0

and P, =1. A comparison of (23) and (30) shows that

_ %
Om

where Q. (k = 0,1,...) is defined in Theorem 3.

(31) P, (k=0,1,...,m)
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If £(f) denotes the queue size at time ¢ also for the modified process,
then it can easily be proved that lim P{&(t) <k} =P (k=0,1,
t—>o00

..., m+1) exists, is independent of the initial state, and

* Qk
(32) Pe= 00 10,

for k =0,1,..., m. Obviously P;,,, = 1. If we take into consideration

that the number of transitions ¢ -¢+1 and ¢+1 -4 (¢ = 0,1,...,m)

in any interval (0,?) may differ by at most 1, then we obtain that

P; = PPy, for k = 0,1, ..., m and evidently Py = P,/(Aa-+P,). Thus we

get (32). (Cf. also P. D. Finch [5], J. Keilson [7] and J. W. Cohen [2].)
THEOREM 4. For 0 < ¢ < x we have

_ W(z—o)
(33) G(xz|e) = —W(w)
where
[ e _ W(0)s
(34) Q(s) _ofe AW (z) = Iyl
for Re(s) > w and o is the largest nonnegative real root of
(35) A[1—wy(s)] =s.

If Aa < 1, then w = 0, whereas if Aa > 1, then v > 0. W(0) is an arbitrary
nonnull constant.

Proof. In this case the process {x(f), 0 <t << oo} defined by (8)
has nonnegative stationary independent increments. This implies that
for 0 <¢ <y <o we have

(36) G(xlz—c) = Gyly—c)G(z|z—Yy).

Since 0 < G(x|y) <1 if 0 <y < z, it follows that G(x|c) can be repre-
sented in the following form

W (5 —
(37) Gl = (m)c)

for 0 <c¢ <z where W(0) = 0 and W(x)/W(0) (0 <2 < o0) iS a non-
decreasing function of z. If we take into consideration that in the time
interval (0, ») one customer arrives with probability Au-4-o(u), and more
than one customer arrives with probability o(u), then we can write that
for x >0 and y >0

(38) G(z+yly) )
= (1— )G (@+y|y—u)+ tu [ G@+y|y+2)dH (2)+o(u).
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If we multiply this equation by W(z+y), then we obtain

(39) W(x) = (1—2u)W(w—|—u)—|—luf W(x—=2)dH (2)+o(u)

for 2 > 0. Hence

T

(40) W' (2) = AW (2)—4 [ W(s—2)dH (2)

0

for # > 0. Forming the Laplace-Stieltjes transform of (40) we get

(41) s[2(s)—W(0)] = 282(s)— 202(s)»(s),
whence

_ W(0)s
42) 20 = iy

for Re(s) > w. This proves Theorem 4.
If we suppose that a is a finite positive number and introduce a distri-

bution function H*(x) for which
dH*(s)  1—H(a)

(43) dx a

if x>0 and H*(z) = 0 if < 0, then by inverting (42) we obtain

[o 0]

(44) W (@) = W(0) D (a)" Hy ()
n=0
where H, () is the n-th iterated convolution of H* (x) with itself; Hy () = 1
if >0 and Hy(x) =0 if 2 < 0.
We remark that if ie < 1, then

(45) W (z) = ————,

that is, by choosing W(0) = 1—Aa we have lim W(z) = 1. If Aa > 1,
then lim W (z)/W(0) = oo.
T—>00

If we consider any busy period other than the initial one, then the
probability that the maximal waiting time during the busy period is < =
is given by

1

(46) 60) = s fW(w—z)dH(z) —1—

W' ()
AW (x)

0

for > 0 which follows from (40).



On tnverse queueing processes 221

ExampLE. If, in particular, H(z) = 1—e ** for # > 0, then
_ W(0)
=

for A # p and W(x) = W(0)(1+ ux) for A = pu.
In this case

(47) W () [s— Ae?=97]

p— pet =12
if A5 u and G(2) = pz/(1+ px) if 2 = p.
NotEe. First, we note that if Ae < 1, then

(48) G(x) =

(49) lm P{y(t) <o} = W)  (0<o< o)

where W (0) = 1— Aa. The limit (49) is independent of the initial state.
If Aa > 1, then lim P{n(t) <x} =0 for all x.
t—00

Second, consider the queuing process studied in this section with
the modification that the total time spent in the system by a customer
cannot increase above m where m is a positive number. That is, if a custo-
mer already spent time m in the system, then he departs even if his
serving has not yet been completed. (This model can be used also in the
theory of dams where there is an overflow if the dam is full.)

If 7 (?) denotes the waiting time at time ¢ also for the modified pro-
cess, then we have
(50) lim P{y() <a) =

W (m)
for 0 < a2 < m, where W(x) is defined in Theorem 4. (Cf. also I. N. Ko-

valenko [8].) If %, = #(7,—0), that is, 5, is the waiting time immediately
before the arrival of the n-th customer, then we have also

(51) lim Plg, <o) = oS

for 0 < 2 < m. This result is due to D.dJ. Daley [4].

4. Queues with exponentially distributed service times. Now consider
the inverse process of the queuing process discussed in the previous sec-
tion. In this case the service times have the distribution function (14).

THEOREM 5. If 0 <14 < k, then we have
%

Q
where Q@ (k = 0,1,2,...) is defined in Theorem 3.

(52) P*(k|i) =1




Proof. (562) follows immediately from Theorem 1 and Theorem 3.
The probability that in any busy period other than the initial one
the maximal queue size is << k is given by

* QO
k — _—
(53) P (k|0) =1 O

for k =0,1,2,... (See J. W. Cohen [3].)
NotEe. First, let us remark that if ia <1, then

(54) P{o; < 0o|&*(0) =} =1—@;

for ¢ = 0,1,2,... where @, = 1— Ja.

Second, consider the queuing process investigated in this section
with the modification that there is a waiting room of size m—1, that
is, the number of customers in the system is at most m. If an arriving
customer finds m customers in the system, then he departs without
being served. In this modified process denote by &, the queue size imme-
diately before the arrival of the n-th customer, and by £&(f) the queue
size at time {. Then independently of the initial state we have

(55) lim P {m— £, < I} — 2.
N—00 Qm
for k = 0,1, ..., m and if H(x) is not a lattice distribution function, then
. Qk+ 1—Q0
56 limP{m— &) <k} = ————
(56) lim P {m— (1) < b} = =5 -

for k =0,1,..., m—1. (See reference [9] and p. 28 in the discussion
of [13].)
C[_‘HEOREM 6. If0 < ¢ < x, then we have

W(e)

(57) G (zlc) =1— W @)

where W (x) ts defined in Theorem 4.

Proof. This result immediately follows from Theorem 2 and Theo-
rem 4.

The probability that in any busy period other than the initial one
the maximal waiting time is <z is given by

W (0)

(58) G (2) = 1— 7 @)

for £ > 0. (See J. W. Cohen [3].)
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NortEe. First, let us remark that if ia <1, then
(59) P{0; < co|9*(0) = ¢} = 1—~W(c)

where W(0) = 1— Aa.

Second, consider the queuing process investigated in this section
with the modification that the total time spent in the system by a custo-
mer cannot be greater than m where m is a positive number. In this
case if 7, denotes the waiting time immediately before the arrival of the
n-th customer, then

m—-x

—z)dH (2)

(60) lim P{y, <a
n—00

W(m—x) W (m—x)
W (m) AW (m)

=1—

for 0 < # < m. This result is due to D. J. Daley [41.
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