ANNALES
POLONICI MATHEMATICI
XXII (1970)

On a certain transformation of complex series
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1. Notations. Throughout this text we will apply the following
notations:

H, — the complex plane, i.e., the set of all complex numbers z = x -+ 1y.

H, — the set of all pairs (oo, ¢), 0 < ¢ < 2r, for which we assume
(00, @)| = oo and arg (oo, @) = ¢.

K (2y; €) = {#: |2 — 2| < &} if 2y € Hy; for 2, = (o0, @), K(2,; €) is the
open angular region whose vertex, bisector and angle are, respectively,

e~l¢im, ¢ = ¢, and 2¢; the arc of the infinite circle H, containing 2, and
adjacent to the described region is included in K(z; €).

H is the set H, v H, with topology generated by the system of neigh-
bourhoods K (z,; €).

X is the family of all complex sequences 8 = {2,}n~1 such that z, = s+
+iyn—0 as n—>oo, and 2, # 0 for infinitely many n.

8§ = X+4iY means that X = {&n}n=1 and ¥ = {yn}nu.

I8 = [21] + |2a] + ...

L(8) is the set of all limit points of the sequence S(+)= {2+ 2,+
+ ...+ 23)n=1 in the space H.

6 — the family of all sequences T = {tn = +1}n-:.
TS = {tnzn}?=1-

A(8) is the family of all sets L(T8) for a fixed § from X and 7 running
over 6.

Ai(8) is the family of all those one-point sets in H, which belong
to A(8); the same symbol denotes the union of all such sets.

I is the family of all continua in H; one-point sets are regarded
as continua.

G, is the point (oo, ) and the one-point set {(oo, w)}.
@, is the point (oo, 0) and: the one-point set {(co, 0)}.

2. Subject of the paper. It is well known that if 8 ¢ 2 and 8§ = X,
then L(S) coincides with the closed interval [a, b], where ¢ = lim X (+)
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and b= limX(+). The interval can reduce to a single point, and the
latter may be — oo or -+ oco. Moreover, if |X| = oo, then A(X) coincides
with the family cof all closed intervals [a, b}]C[— oo, + 0], i.e. with the
family of all continua in the extended x-axis. In the case |X| < oo, A(X)
reduces to Ay,(X), and the latter is a perfect set on the z-axis.

The simplicity of the structure of the sets L(S) is extended to the
complex case. The fact that L(8) is a non-empty closed subset of H is
an evident consequence of compactness of the space H. The assumption
zp—0 implies connectivity of L(S). (For a simple proof cf the latter prop-
erty, see [1].)

What makes the complex case be more complicated than the real
one are the distribution of sets from A(S8) in the space H and the fact that
two sequences S, = X,+¢Y, and 8, = X,+1Y, with |X;| = |¥{| = | X,
= |¥Y,| = co can determine two families A(S,) and A(S,) one of which,
say A(8,), coincides with I' whereas /(8,;) consists of certain simple
continua.

Several theorems about the family A(S) as a function of S have
been proved in paper [3] ([4] and [5] are its two-part summary). However,
in order to be able to quote these theorems and to formulate the problem
we are going to deal with, some simple notations need to be introduced.

A line P passing through the origin is called principal azis of 8 if
for every open angular region R with vertex at the origin and with bisec-
tor P.we have D) |2s| = oo, where the summation runs exactly over all 2,
which belong to R. Let A(S) be the set of all principal axes of 8. It is
evident that A(S)=@ if SeXZl={SeX: |§| < oo}. Now we define
the following three disjoint subfamilies of X: X consists of all 8 such
that | X| = oo, and |¥| < oo; X3 — the family of all § such that |X| = | Y]
= oo and the w-axis is the only principal axis of §; X{ — the family of
all S s4uch that both of the coordinate axes belong to A(S8). We put
2= kU 2.

=1

Of course, X is essentially larger than ZX° Nevertheless, we may
confine ourselves to the case § « Z° In fact, let § ¢ Z\Z°. Hence, S ¢ 27
and 4(8) #@. If A(8)=1 and « is the angle between the z-axis and
the principal axis of 8, let f be the rotation of H, by the angle —a. If
A(8) = 2, let », and v, be any two linearly independent unit vectors lying
on principal axes of § and let f denote the affine transformation generated
by the conditions f(v,) = 1 and f(v,) = ¢. Thus, with every § from X\ Z°
there are associated a non-generated affine mapping f = fs and a sequence
8" = {f(2k)}r=1- It is easily seen that 8’ belongs always to Z°. We extend f
to H, putting 2’ = (oo, ¢’) = f(2) for z= (oo, ¢) in such a way that
¢’ = arg f(e*). This extended f is one-to-one and continuous in H. Every
continuum L(T8) from A(S) is the image of L(T8’) from A(S’), under
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the map f~', and it does not change any of these essential properties of
L(TS8’) we are interested in.

For every S ¢ X% the following subfamilies of A(S) will be distin-
guished: @y(8) — the family of all sets from (S) which reduce to single
points in H, or to finite segments parallel to the x-axis; @,(8)— the
family consisting of two one-point sets G, and G, and of all half-lines
and lines from /(S) which are parallel to the z-axis; @(8) = D(8) v
v @,(8); 2(S) — the family of all sets from A(S) which are unions of
half-lines parallel to the z-axis and of arcs in the infinite circle H, which
contain at least one of the points G, and G,. (A more strict definition
of 2(8) is given in [3], p. 34.) Of course, we have A,(S)C @(8S)C D(8)
and @,(8) C 2(8)C A(S).

The case S e X} is well-known: A(S) reduces to Ay(8) which is
a perfect set.

The case S ¢ 2§ is completely described by Theorem 2, [3], p. 20,
saying that
(1) AS)y=T
for every 8 e Xj.

For 8 ¢ X} we have A(S)= @&(S), which is an evident consequence
of the definitions. In this case the family 2(S) reduces to @,(S).

The case S ¢ X3 is the most difficult of all of the four. The details con-
cerning the family @(S8) are given in [3], Chapter IV. It is worth mentioning
that the distribution of the segments from @,(S) in the plane H, may be
very complicated. As for the family £(8§) it has been fully described
in [3], Chapter V. One of the examples given in [3], Chapter VI, shows
that there are 8 ¢ 2§ for which we have

(1) A(8) = Py(8) v Q(8) .

On the other hand, another example from the same chapter shows
that there are § e Jj realising (1).

The two examples gave rise to pose the question whether cases (1)
and (1’) are the only ones which can occur within Z3. The positive answer
to this question is the main subject of this paper.

3. Scheme of the paper. Let W = {w;};-; be any sequence of
complex numbers or vectors w; = u;-+iv; and let ¢, = a,+1b, be any com-
plex number or vector. Placing the origin of the vector w, at the point ¢,
we obtain a point ¢, = a,+ b, = ¢g+w,. In the same way we define
points ¢; = a;+1b; = ¢ +w, +w,+...+w; for j = 2,3, ..., k. We denote
by B[e¢,, W] the orientated polynomial line with successive vertices
Coy Cyy ey Ck. Be[cy, W] and B,[c,, W] are lengths of the projections of
B[e,, W] on the coordinate axes.
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We shall express properties (1) and (1’) of § = X+4¢Y from X° by
means of the following simple conditions:

(2) There is a T € 0 such that TX (+) converges whereas TY (+) diverges.

(2') There is a T €6 such that TX(+) converges whereas hm TY ()
_ Tt
=1
(2"") There is a T ¢ 0 and an infinite sequence of positive integers n, < p,
< My < Py < ... such that B;[0, TS (nk, px)]—>0, and B,[0, TS (nx, pi)]
—>8, 8 > 0, as k— oo, where T'S(nk, px) 18 the sequence with successive
terms lng+12n+15 by +2n 425 ooy bpy 2, -
(3) There is a T € 0 giving TX(-+) bounded an TY (4) divergent.
(3')  There is a T € 6 for which TX(+) is bounded whereas lim TY (+)
_ [t
=

(3”") There 18 a T € 0, two positive numbers a and b and a sequence of
positive integers ny < p;, < Ny < Py < ... such that B,[0, TS (nk, pr)]
> b and B0, TS(nk, pr)] < a for all k.

(4) There is a T € 9 such that TY(+) diverges and L(TS) contains
none of the points G, and G,.

(5) There is a sequence I = {i; = 0, +1}72,, a positive number r and
an infinite sequence of positive integers n, < P, < My < Py < ...
such that B,[0, IS (nk, pr)] > (B0, I8 (nk, pr)]+1) for all k.

It is evident that none of the ten conditions hold for 8 e X?u 2‘2’,
if the trivial case Q2(S8) = &,(8) is excluded, and that (1) implies all the
others with the exception of (1’). Hence, in view of Theorem 2 we have
mentioned, every § from X} satisfies all the ten conditions with the ex-
ception of (1').

The non-primed conditions have been arranged in such a way that
the implications (k) = (k+1), k=1, 2, 3, 4, are evident from the defini-
tions. Thus we see that the problem we have posed will be solved completely
if we prove the following theorems:

THEOREM A. If 8 ¢ X3, then (5) implies (1).
THEOREM B. If 8 ¢ X3 and (5) does nmot hold, then (1’) holds.

In our proof of Theorem A we confine ourselves to implication
(6) = (2”), for that (2”) = (1) was proved in [3], Theorem 1, p. 18. The
proof of (5) = (2") will be divided into three steps: (5) = (3"'), (3"") = (3)
and (3') = (2").

In the proof of Theorem B we shall refer to a partial result from
paper [3], Theorem 13, p. 43.
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4. Proof of (3) = (3").

Leyma 1. Every sequence W = {w;}_; of complex mumbers comtains
a subsequence W' such that

(6) B0, W'] = 27'B,[0, W]
and
(7) B[0, W] < 27'BJ0, W]+ m(W),
where m(W) = max |w;|.
1<i<k

Proof. In each of the following cases a = B0, W] = 0, m = m(W)
= 0 and m > 27 'a, W = W satisfies (6) and (7). In the case § = B,[0, W]
= 0, {w,} may be taken for W’.

Thus we may assume additionally that

(8) a>0, Af>0 and 2m<ea.

- Let 4 be the smallest of all the rectangles with sides parallel to the
coordinate axes which contain B[0, W] and let z = -} ¢y be the centre
of A. By (8), A reduces neither to a point nor to a segment and the rec-
tangle e;e,e.e,, in Fig. 1 is contained in 4 = ¢,e,¢5¢,.

yﬂ
&, €19 €g €g 3
Y z
x-m |x X+m _
0 X
& &g € &y 7]
Fig. 1

By the definition of A4, the origin 0 belongs to A. We consider the
case when the origin 0 belongs to the closed rectangle e, egeqe,, the other
case being analogous. In this case the one-side polygonal line B[0, W (0, 1)]
is contained in the rectangle e,e,ese,, in view of (8).

Let k, be the greatest of all the numbers 1 such that B[0, W (0, 1)]
C ey6,60¢,. 1f B0, W(0,%k)]>2"'-8, the proof is finished, for
W’ = W(0,k,) satisfies (6) and (7). Thus, let B0, W(0, k)] <27 '-8.
Of course, we have 1 <k, <k, ¢, = wy+w,+ ...+ wp, € &;6,65¢, and ¢g, 41
lies on the right-hand side of the line e,e,. Let k, be the greatest of all
the numbers 1 such that B[cy,, W(k,, 1)]C e;e,656y. If it were B,[ck,,
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Wik, k;)] > 27'-8, the proof would be completed, for W’ = W(k,, k)
would satisfy (6) and (7). So, let B,[ex,, W(k,, k)] < 27'-8. In this case
it must be k, < k, for otherwise we would have g < B,[0, W(0, k,)]+
+ Bex,, Wk, k)] <2 '-f4+-27"-8 = B, which is impossible.

By the definition of %,, the vertex ¢+, lies on the left-hand side
of the line ¢;¢,. This means that the polygonal line B[0, W], W’ = {w,, w,,
ooy Wiy y Wiyr1)y 18 contained in the strip between the lines e;e,, and e;e;.
Let &k, be the greatest of all the numbers 1 such that the polygonal line
B[0, W(0, k,) v W(k,,1)] is contained in the strip between these lines.
If we had B,[0, W(0, k) v W(k,, k)] = 278, the proof would be com-
pleted, for W' = W (0, k,) v W (k,, k;) satisfies (6) and (7). This certainly
occurs when k; = k. Indeed, in view of Blex,, W(k,, k;)] < 27'8, the
complementary subsequence W(0, k) v W (k,, k) must satisfy (6). Thus
ky< k.

By the definition of k;, the point ¢ = cp,+ Wry41+ Wrgr2+ .o + Wiy
belongs to the strip between e¢ge, and e,e; whereas ¢’ -+ wy,+, lies on the
right-hand side of e,¢;. Hence, in view of the fact that ¢, belongs to the
strip between e;e,, and ez6y, the point ¢, + wi,41 is placed between e;ey
and e,¢,. We denote by k, the greatest of all the numbers 1 such that
the polygonal line B[ecx,, W(k,, k,) ©v W(k;, 1)] is contained between ese,,
and e,e,. If we had By, Wk, k) v W(ks, k)] = 278, the proof
would be finished. This case certainly occurs when k, = k. In fact, in view
of B0, W(0, k) v W(ky, k;)] < 27'-8, the complementary subsequence
W(k,, k) © W(ks, k,) must satisfy (6) and (7).

yA

Fig. 2

From the above construction it is seen how to split W into two disjoint
subsequences W' = W (0, k) v W(ky, k3) v ... and W' = W(ky, k,) v
v W(k,, k,) v ... each of which satisfies (7). The fact that for every splitting,
W= W o W"’, of Winto two disjoint subsequences W' and W'’ the sum
B0, W]+ B,[0, W] is not less than B,[0, W], implies evidently that
at least one of the two subsequences W and W’ must satisfy (6).

Remark. In the general case the coefficient 27 in (6) cannot be
replaced by any number d = 27'+e¢, where e > 0. In fact, if e> 27,
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then every sequence W with terms of the type wn = tvn, v» > 0, can be
taken as a counterexample. So, let ¢ < 27" and let k be any positive number
less than 2 '¢. We denote by W any finite sequence such that B[0, W3]
coincides with the diagonal 0g in Fig. 2 and m(W;) < k. It is evident
that for every subsequence Wi of W, satisfying (7) we have B, [0, W3]
< 27'+27'h = 271+ ), whereas (6) with d instead of 27" gives B,[0, W}]
>2"'4+e¢= 2" 1+2¢), a contradiction.

LEMMA II. To every non-negative inleger q in every sequence W = {w;}5_,
of complex numbers a subsequence W' can be chosen in such a way that

(9) B0, W] = 27°B,(0, W)
and
(10) BJ0, W] < 279B,[0, W]+ 2m(W).

Proof. For ¢ =0 we may put W = W. For ¢ =1 the lemma is
true, in view of Lemma I. If g > 2, then applying ¢ times Lemma I one
obtains (9) and (10).

LEMMA TIL. To every sequence W = {w;}i-1, a sequence T = {t;= +1}5_,
can be defined in such a way that

(11) gttt -ty < m(W)Y3  for j=1,2, .., k.

This lemma was proved in [2].

LeMMA IV. Suppose that a sequence W = {w,-}?’:l, two positive numbers,
a and B, and a sequence I = {i; =0, +1}¥_, has been chosen in such a way
that B,[0, IW] = B and B,{0, IW] < a. Let, moreover, q be any non-negative
integer satisfying

(12) 2748 = 2Y3m(W).

Then there is a sequence T = {t; = +1}j_, such that
(13) B0, TW]=>2"%-8—2}3m(W)
and
(14) B0, TW]< 2 %a+2(1+V3)m(W).

Proof. Let I=1"oI", where I'” encloses all zeros of I and only
zeros. By Lemma II, I'W’ has a subsequence I*W* such that

(15) B0, I*'W*] > 2—q'ﬁ ’
and
(16) B0, I*W*] < 27 % a+-2m(W).

Now let W** = {wy,, wp,, ..., wp,} be defined by W = W* . W**,
Lemma IIT assures the existence of a T** = {i,, = +1};-1 such that

(17) ltplwzjl"l—tp’wpa_i"‘ u.+tpijj| << }/EM(W) ] i= 1’ 2, veey S.
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Putting T = I* - T** we see that (13) and (14) are immediate con-
sequences of (15)-(17).

LEMMA V. (5) = (3").

Proof. Let (5) hold. Without any restriction of the generality we
may confine ourselves to two cases: (a) there is an I such that
Iy = B[0, IS(ne, pr)] <1 for all k and (b) 2% < Ix < 2¥** for all k.

Case (a). We have B0, IS(ng, pr)] <! and B0, IS(nk, pr)]l =17
for all k, and r = 2)/3m (I8 (nk, pz)) for all k sufficiently large, in view of
the fact that z;—>0 as j—»oo. By Lemma IV, if ¢ = 0, there is a block
of signes T(nk,pr) such that B,[0, TS(nk, pr)] = r— 2} 3m (T8 (nk, pr))
and B[0, TS (nk, pr)] < U+ 2(1L +y3)m (T8 (nx, px)) < 1+ 2(14+y3) for
all k sufficiently large. Hence, (3'’) holds for b = 27 'r and a = I+ 2(1 +V3).

Case (b). By (5), we have B,[0, IS8 (nk, pr)] > r(2¥+1) for all k.
Putting g =r(2°+1), e=2"", ¢=Fk, and applying Lemma IV we
see that there is a sequence T (n,px) such that B,[0, TS(nk, px)]
> 27%(2% +1)— 2V 3m (T8 (nk, pr)) and B0, TS (nmk, px)] < 27 *-25+' 4
—]-2(1+|/§)m(TS(nk,pk)). In other words, (3"”’) holds for a =3 and
b=2""r

5. Proof of (3”) = (3’). In view of property (3’’), we shall not
restrict the generality if we assume that there are two positive numbers a
and b, and an infinite sequence of segments 8(nk, pr), M < Py < Ny
< Py < ..., such that the following conditions hold for all %:

(18) B0, S(nk,pr)]=b and B[O, 8(nk, pr)] t8 completely above the
x- axis;

(19)  the projection of B[O, S(nk, pr)] on the x-awis is contained in the
interval [—a, al;

.

(20) 12l < 27%-2 % min(a, b) for all j > n;.

It is clear that (3') implies § ¢ Z7. Since, moreover, § ¢ 2° we may
refer to Lemma 15, [3], p. 15. By this lemma, we may assume our
sequence S have the property expressed by the following

LEMMA VI. To every positive integer k and to every sequence of signes
T(n,, pk) there is a number lx, ny, > px, and a sequence of signes T (pk, ny)
such that pulling vy, = ap,+1Bp, = tn,+1%m+1+ tny+22n 42+ oo 1p 2, We
obtain a polygonal line By = Blyp, TS(pk,ny)] for which the following
conditions hold:

(21) By s contained in the reclangle a,a,asa, in Fig. 3, where |a,a,|
= |ayag| = |a¢a;| = 27°-27 *min(a, b);

(22)  the last vertex of By belongs to the square a,a;a.a,.
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Proof. We have to prove the existence of a T e § for which lim 7Y (+)
| +oo, and TX(+) is bounded. Such a T will be constructed in blocks
of the types T'(n«, px) and T'(px, ny).

Let r, be the smallest of all positive integers  such that rb—2°b > 1.
The signes of the first block T'(nmg,p,), ¢ =1, will be all +1, i.e.,
T8(nyy p1) = 8(ny, py). The second block T(pg,nq) ¢ =1, wil be
defined so that (21) and (22) hold for ¥ = 1. Suppose that 2all the blocks
T (ngys Pa))s T(Payy Mq)s - T('nq,_l; Pa;_), T(Pa,_,’ Ng)y i = loy s Jj <,
have already been defmed Then the blocks T'(ng, pe) and T'(pg, ng,,),
¢j+1 = lg;, are defined in the same way as T(nqo,pqo) and T'(pg,, Ng,)-
Thus we may assume that the blocks T'(ng, p,) and T'(pg, ng,,) are
defined for j=0,1,2, .., r,—1.

7
a, ag a; as
Be, -7,pk
a, a; [ a,
0 X
Fig. 3

By (18) and by our definition of the blocks T'(ng, py;), the sum
of all t,9,» which belong to the segments T'S (nq,., Pg) 0<j<mn-—1,is
non-smaller than 5. On the other hand, in view of (21), the absolute
value of the sum of all tmYm Which belong to the blocks T'S(pq,, ng,),
0 <j<mr—1, is non-greater than 2~ %. Hence and from the defmltwn
of r,, we see that
(23) by = by 1 Yms1 + tngroYu 22+ ~--+tnqn’yn =1.

ar,

Now, let r, be the smallest of all positive integers » > r, such that
27127 p—(r,—7r,)b < —2 and let the signes of the block T(nq,; Pa,,)
be all —1. The signes of the next block T (Pa,, s Ng, ,,) are defined so that (21)
and (22) hold for k¥ = ¢,,. The same method is applied to all the further
pairs of blocks T(ng, pe;) and T(pg;, ng,), j=n+1,n+2, .., -
—7r,—1. By (18), (21) and the definition of r,, we have

(24) by = g 1tYmr+ oy s o Yng+2+ .. +(n yn < —2.

We have shown a construction of the block T('nq», Ng,) = T (ng,y Nq, ) v
v T(nqn, ng,) which gives (23) and (24). From this construction it is
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seen how we have to define the blocks T(anj, an_ﬂ), j=2,3,..,
?
giving

>j,j=2m—1
(25) ba’ = tm+lyn1+l+tm+2ym+2+ see -[—tnqﬂy”qﬂ{ W) ’

< —j,j=2m.
Let T = {1}iL, v T(ny,, ng,) < T(ng, , Mg, ) v ... In view of (25),
lim TY(+) = {iz What is still to be proved is the boundedness of

TX(-). But the latter property is an evident consequence of the con-
struction, in view of (19), (21) and (22).

6. Proof of (3') = (2"”). Let S have property (3'). We shall not
restrict the generality if we assume

b

(26) “EY('E‘): oo’ loyt et tayl <4, j=1,2,..

It suffices to prove that given ¢ > 0, natural numbers #n and p, » < p,
and a block of signes T'(n, p) can be found so that the polygonal line
B[0, TS8(n, p)] satisfies the following conditions:

(27) B0, TS(n,p)I<c¢,
(28) 1—e<< B0, T8(n,p)]<1+¢.

Let ¢ be the smallest of all non-negative integers r such that 27"-44 < ¢
and let b = 2% In view of (26), there exists a segment S(n, p) such that
8p = 2,4+ 2+ ...+ 20 € a aya4a;, Fig. 4, 3,
=2,+2+... +2p € Ag0,a5a4, |a,a,] = 24, and )

(29) B(sa, 8(n, p)1C a,a,050, . G4 g
Of course, we may assume that e
(30) [25]<27*¢ for all j=ntl.

By Lemma II, S(n,p) has a subse-
quence S'(n, p) for which we have b

(31) B,[0,8'(n,p)] = 27" B0, 8(n, p)]

> 2—4.2+Q =1 X=
31111 2".5

(32) Bf0,8(n,p)]<27%244+2-27%¢ a4 @
< (27 427V, Fig. 4
Considering (30), we may additionally impose
(33) B0, 8'(n,p)] <1+27"

We denote by 8”(n, p) the complementary subsequence of S'(n, p).
In the same way we split sequence TI'(n, p) we are seeking for all the terms
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of T'(n, p) will be +1. Referring to Lemma III and to (30) we define
T”(n, p) in such a way that

(34) B0, T"8"(n,p)]<2-27*Y3¢ fort=zand t=y.
It is seen that (31)-(34) imply (27) and (28), which ends the proof.

7. Proof of Theorem B. We have to prove that the negation
of (5) implies (1’). Let 8 ¢ X3, T € 8, and let us suppose (5) does not hold.
We shall consider all the cases that can ocecur.

(a) TY(+) converges. In this case only the following eventualities
can occur: lim7X(+)= —oo and L(TS)= G, imTX(+)= + oo and
L(T8)=@,, — oco=IlimTX(+)<lmTX(+)< +oco and L(TS) is
a ‘left’ half-line parallel to the z-axis, — oo < lim TX(+) < lim TX(+)
= +oo and L(T8) is a ‘right’ half-line parallel to the x-axis, — oo
=1im TX(+) < lim TX(+)= oo and L(TS) is a line parallel to the
x-axis, — co < lim TX(+) <lim TX(+) < + oo and L(T8) is a segment
parallel to the z-axis. In other words, in each of the above eventualities
L(TS) belongs to @,(S) v @,(8).

(b) TY(+) diverges and L(TS) ~ Hy= 0. Since (4) does not hold
either, at least one of the points G; and G, must belong to L(TS). If
exactly one of the points G, and G, belongs to L(TS8), say G,, then L(TS)
as a connected subset of H, is an arc containing G,, and as such, by the
definition, belongs to 2(8). If &, v G,C L(T8), then L(TS8) is a union
of two arcs containing G, and @,, respectively, and as such, by the defi-
nition, belongs to £2(S).

(¢) TY(+) diverges and L(T8) ~ Hy # @. Let us decompose L(TS)
into Ly(T8) = L(TS) ~ Hy and L,(TS8)= L(TS) ~ H,. Of course, Ly(T8)
# . Since (4) does not hold either, L,(TS) # 9, too.

Referring to the definition of (S), it suffices to prove that each
of the components Ly(7TS) and L,(7TS) belongs to 2, i.e., that the com-
ponents are unions of sets from the family G, v G, v 2, v Q2,, where
2,(2,) consists of all left (right) half-lines parallel to the x-axis and of
all arcs of H, containing G,(@,).

A particular case of Ly(7T8) has already been examined in [3], p. 43,
Theorem 13. This theorem says that if an § ¢ X3 has a property (—), p. 42,
and if

(35) — oco<lim TY(+) < lim TY(+) < + o0,

then L(T8) e 2(8). .
Hence, since (5) <= (3"") (Lemma V) and the negation of (3"’) implies
property (—), Lo(T8) € 2(8) for every T satisfying (35).
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The conclusion of Theorem 13 is true for every I satisfying a weaker
condition
(36) —o0 <lim TY(+) <lim T¥(+) < + oo,

i.e. for every T we deal with in case (c¢). Since the proof of this new theorem
is almost identical with the proof of Theorem 13, we omit the details.

As for L,(T8S) we have to prove that to every point 2 = (oo, ¢) € L,(TS)
there is an arc A contained in L,(T'S), such that at least one of the points G,
and @, belongs to A.

The case L(TS) = G,, L,(T8) = G, and L,(T8) = @, v G, are evident.
So, let L,(TS) contain a point 2= (oo, ¢) different from @, and @G,. It
suffices to prove that to every &> 0 there is a segment. TS(n, p) such
that the polygonal line B = Blwy, TS(n,p)l, W= tn+1i0n = ,2,+
+ 1325+ ... + tu2n, satisfies the following conditions:

BAK0;e)=0, BnK(z¢) #09,
BA[K(Gy;e)w K(Gy;e)] #0 .

We confine ourselves to the case 0 < ¢ < 27, the case n < ¢ < 2%
being analogous.

(37)

Fig. 5

Let ¢ be any fixed positive number. For the sake of simplicity we
assume ¢ < min (p, T—¢). Since z = (oo, ¢) e L{T'S) and at least one of
the points &, and G,, say G,, belongs to L(T8), to every 4, 0 < d <,
a pair of positive integers g and », ¢ << 7, can be chosen in such a way that
(38) wge K(Gy; 0), w,eK(z; dsing).

Fig. 5 illustrates the position of the partial sums w, and w,.
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There are only two possibilities: (i) there is a positive d < ¢ such
that Blwg, TS(g, r)] » K(0; ¢7') = O and (ii) B[wg, TS(g, )] ~ K(0; e7?)
# O for every 6 <e.

In case (i) T'S(q, r) may be taken for 7S(n, p), for (37) holds for
such a substitution.

In case (ii) we cut T8(q,r) into two pieces TS(q,n) and TS(n,r)
in such a way that » is the smallest of all k such that T'S(%k, r) is wholly
above the line a,a, in Fig. 5. Of course, T'S(n, r) and K (0; ¢~1) are disjoint
for every é < e&. Now, again, there are only two possibilities: 1° there is
a 6 < ¢ such that B[wa, TS (n, )] n [K(G,; €) v K(G,; )] # 9 and 2° for
every 8< ¢, B[ws, T8(n, r)] is contained in the trapezoidal region between
the lines a,a,, a,a, and a,a, in Fig. 5.

In case 1° T8(n,p)= T8(n,r) satisfies (37). We shall show that
case 2° does not hold. In fact, we have B, = B, wn, TS(n,r)] =6 "'—
—e1—a, where a = max |25y, and Bz = Bjws, T8(n, r)] < 2-e71+

=20
+2e-1ctge+2(By,+a)etge. Hence, after a very simple calculation,
B, > (1+2ctge)"'(1+B;) for all é sufficiently small, which implies
property (5), contrary to our assumption. This ends the proof of
Theorem B.
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