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1. Let f be a real function defined in an open interval I of which
[a, b] is a closed subinterval. Let

f(@+h)— f(z—h)
2h ’

9(@, h) = ze[a, bl,wthel, b #0.

Then the upper and the lower symmetric derivative of f at x is de-
fined by

f®(x) = limsupg(z,h) and fU(x) = liminfe(z,h),
h—0 = h—0

respectively [5]. If f®(z) = f®(x), then the common value, denoted by

fO (), is the symmetric derivative [3] of f at .

The approximate upper limit and the approximate lower limit of
¢(x, h) as h—0 are respectively called the approximate upper and the
approximate lower symmetric derivative of f at x and are denoted by f“’ (x)
and fQ)(z) respectively [6]. That is, f{)(x) is the lower bound of all
numbers ¥ (including + co) for which the set {h:h>0; @(x, h) > y} has
the point zero as the point of dispersion ([10], p. 128).

Similar is the case of fl(x). If fQ(z) = fQ(x), then the common
va.lue is the approximate symmetmc derivative of f at x and is denoted by

f(l)

2. Definitions and notations. A set F is said to satisfy the property M,
iff ¥ is an ¥, and every one-sided neighbourhood of each point in Z inter-
.sects F in a set of positive measure. A function fis said to satisfy the prop-
erty M, iff, for every real a, the sets {z:f(x)> a} and {x:f(z) < a}
satisfy the property M, [12]. The oscillation of a function f at a point =
will be denoted by w(x, f). The Lebesgue measure of a measurable set A
will be denoted by m(4). Throughout the paper R stands for the real
line, —c0o < x < +o0.
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3. In paper [6] Mukhopadhyay has shown that if f is approximately
continuous on [a, b] and if f{}) is non-negative everywhere on [a, b], then f
is non-decreasing on [a, b], and that for a monotone function f, if f{2) exists
on [a, b], then f also exists on [a, b]. In this section these results are
strengthened.

LevMMA 1. Let [a, b] < I, where I is an open interval, and let f: I>R
be approximately continuous on [a,b]. If f‘” >0 on [a,b] and if there is
a point x,, a < Ty < b, such that f(a) < f(x,), then f(a) < f(b)

Proof. Let £ = {x: xe[a, b]; f(a) < f(x)}. We show that beE. Let C
be a set such that

(i) C cE,

. |E N[z, 90"]! 1

(11) T
x' —x =9’

whenever z’, z''eC and 2’ < 2''.

Let S be the collection of all such sets C. Since f is approximately
continuous at x,, S is non-empty. Let 8 be partially ordered by set inclu-
sion. Then one can verify that every linearly ordered subset of 8 has an
upper bound in 8. So, by Zorn’s Lemma, § has a maximal element K.
If m = sup K, then meE. For if x+ < m,xeK, then there is a sequence
{#,} = K such that z <2, <2,,.,, limz, = m and

|[E N[z, m]]| _ lim B N[z, z,]| _1_

m—x T, — 2

Thus m is a point of positive upper density of E and since f is approxi-

mately continuous, meE [2].
We shall now show that m = b. If possible, let m < b. Then, since
J8(m) > 0, by the above conclusion there exists y ¢ E such that y > m and
lEnm, y]l 1

y—m 2

This shows that yeK and y > m, which is a contradiction, ,for
m = sup K. This completes the proof.

THEOREM 1. Let [a, b] < I, where I i3 an open intervaly-and let f: I—>R
be approwimately continuous on [a, b]. If f& >0 on [a, b], then f is non-
decreasing on [a, b].

Proof. Let us first assume that f) > 0 on [a, b]. If possible, we suppose
f(a) > f(b). Since f is apprommately continuous, it satisfies Darboux
property [1]. So for any two reals 7, and 7, satisfying f(b) < 5, < 7, < f(a)
there are points x, and z,, a < x, < 2, < b, such that f(z,) = 9, and f(o;)
= 7,. We assert that f(x) > 5, for all z¢[a, 2,]. For, if possible, suppose
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there is a point z’e(a, 2,) for which f(z’) < #,. Since f satisfies Darboux
property, we may suppose f(z') > 7,. But applying Lemma 1 to [/, z,]
we conclude that f(z’') < %,, which is a contradiction. Similarly, flz) <
for all xe[x,, x,]. For if there is &' ¢(x,, ¥;) such that f(z’) > #5,, then
applying Lemma 1 to [z,, #,] we have %, < 7,, which is a contradiction.
Thus f(z) > n, for all xe[a, z,] and f(r) <, for all xe[z,, z,]. Hence
FO(y) < 0 but this is a contradiction, because f{) > 0 on [a, b].

Now 1f f& > 0 on [a, b], then, for arbitrary > 0, consider the function

@y Where 9.(@) = (@) +ez.

Applying the above conclusion to ¢,, we have ¢,(a) < ¢,(b). This
gives f(a) +ea < f(b) + ¢b. Since ¢ is arbitrary, f(a) < f(b). This completes
the proof.

The following theorem generalizes Theorem 1:

THEOREM 2. Let [a, b] < I, where I is an open interval, and let f: I—R
be approwimately continuous on [a,b]. Let

i) f0) > 0 almost everywhere on [a, b];
(11) fQ > —oo everywhere on [a, b].
Then f is non-decreasing on [a, b].
Proof. Let E = {z: z¢[a, b]; fQ(2) < 0}. Then m (E) = 0. Hence,
by [8], p. 214, there exists a continuous non-decreasing function o(x)
on [a,b] such that

o' (x) = +o00 for each point zeF.
Let ¢ > 0 be arbitrary. Consider the function y defined by

y(2) = f(®) +eo(x).

Function v is approximately continuous on [a, b] and 1,0(’) ()= 0
for all # on [a, b]. Hence, by Theorem 1, y is non-decreasing on [a, b].
Since ¢ is arbitrary, f is non-decreasing on [a, b]. This proves the theorem.

THEOREM 3. Let [a, b] < I, where I is an open interval, and let f: I -~R
be approximately continuous on [a, b]. Let

(i) f“)< 0 almost everywhere on [a, b];

(ii) f < + oo everywhere on [a, b].

Then f i8 mon-increasing on [a, b].

Proof. This can be proved by putting f(z) = —g(z) and applying
- Theorem 2.

From Theorems 2 and 3 we get the following

THEOREM 4. Let [a,b] = I, where I is an open interval, let f: >R
be approvimately continuous on [a,b] and let —oo < fU < f < + oo
kold everywhere on [a, b]. If 1)) exists and equals to zero almost everywhere
on [a, b], then f is constand.

8 — Colloquium Mathematicum XXVIIL.2
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THEOREM 5. If f is monotone in any open interval I, then (i) f1) = fO
and (ii) fO = fO everywhere in I.

Proof. Suppose that f is monotonically increasing in the open inter-
val I and that there is a point éeI such that

m = (&) < fD(E) = k.

Choose & such that O% e < (k—m)/2. Since m < k—2¢, there is
a sequence h,—0+ such that £+ h,el and

J(&+hy)—f(E—hy,)
(1) oh,
Hence

< k—2¢ for all n.

h f 11 n.
2 (h—s) < h, for all n

For a given n we denote by J, and I, the intervals

2(k—e) LA B)

[0,%,] and [

respectively. Then

AR —f(E )

m(J,) =h, and m(Il,) =h,

2(k—e)
So, from (1),
m(I,) o f(E+h)—f(E— hy) k—2e
@ ) T ami—e) L h—e”

Since f{) (&) = k, there is an N such that the set

B ={h: > 0;f(tf+h)2—hf(5—h) ks _8}

satisfies the inequality

m(ENdJ,) -1

. L >N.
(3) ) o for all n> N

Now, if hel,, we have

f(& +ha) —f(§—hy)
ey SETR<ED,

and
JE+h) < f(E+h,)<f(E—hy)+2h(k—e) < f(E—h)+2h(k—¢).



SYMMETRIC DERIVATIVE 279

So,
J(§+h)—f(§—h)
2h

<k-—e
and hence h¢FE.
Therefore ENI, = 0. Hence from (2)

(4) m(BENJ,) m(En(J,—1,)) _ m(Jn) —m(I,)

m(J,) m(J,) h m(Jy)
m(,) k—2
AR TR

Since (3) and (4) are contradictory for n > N, we conclude
O = fO  for all # in I.

To prove the second condition, suppose that f is monotonically.
increasing in the open interval I and that there is a point &eI such that

ky = Q&) < fO(&) = k,.

Choose ¢ such that 0 < &< (k,—k,)/2. Since k, > k,+2¢, there is
a sequence h,—0 + such that £+ h,el and

oh,,

J(& +ha) = f(&—hy)
2(k,+e)
For a given n we denote by J, and I, the intervals
[O’f(é +ha) —f (£~ hn)] ind [h,,,f“ + ha) —f(E— h,,)]
2(ky+¢) 2(ky+¢)
respectively. Then

J(&+hy) —f(&—hy)

(5)

Hence

> ky;+2¢ for all n.

> h, for all n.

F(& +hy) —f(E— hy)

e TR R T
Hence, from (5)
m(L,) oy 2h, (k,+¢) _ k,+s
(©) m(J,) ! J(&+h,)—f(&—hy) >4 ky+2e

Since f{)(&) = k,, there is an N such that the set

2h

satisfies the inequality
‘ m(End,) &
7 —_—>1
(") md,) -k +2e

for all n > N.
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Now, if hel,, we have

J(&+hy) —f(E— hy)
2(k, +e¢)

E+h, <EFRKEH
and
fE+R) = f(E+hy) = f(E—h,) +2(k+e)h = f(E—h) +2(k, +¢)h.

So
F(E+h)—f(&—h)
2h

>k, +e

and hence h¢E. So, EnI, = 0. Hence, by (6),

m(End,) m(En(J,—1I,) _m(J,)—m(I,)
@) Ty my o~ m(Jy)
m(1,) k,+e
Tmd,) - kA2

Since (7) and (8) are contradictory for n > N we conclude that f{J) = f®
for all # in I.

Similar results can be proved if f is monotonically decreasing. This
completes the proof.

COROLLARY 1. If f is monotone in I and if f)) exists in I, then f) also
exists in I.

COROLLARY 2. Let f: >R be approximately continuous and let there
exist & continuous function ¢: I—>R such that ¢! emists in I and satisfies
any one of the following relations for all x in I: (i) fG)(z) <o (w);
(i) £33 (@) = ¢V ().

Then f is continuous and f1) = fO and fQ) = f@in I.

Proof. f{) < ¢ in I, then the function g = f—¢ is approximately
continuous in I and §{) < 0 in I and hence g is non-increasing in I. So ¢
is continuous and g@) = g, g&) = ¢!V in I, which implies that f is con-
tinuous and f{ = f® and f{) = f in I.

4. In a recent paper [11] Weil proved that if f hag an approximate
derivative f,, and if for an open interval (a, #) the set fo;'((a, 8)) is non-
-empty, then the set {z: f'(x) exists and a < f'(2) < B} is of positive meas-
ure. In this section we obtain an analogue for approximate symmetric
derivative. In our proof we shall use an analogue of Denjoy’s Theorem
for symmetric derivatives which informs that if f is continuous in an open
interval I and if f¥ exists and possesses Darboux property on [a, b] < I,
then for any open interval (a, ) the set {x:ze[a,b]; e <fV(2) < B}
is either void or of positive measure [5].
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Finally, with the help of the above theorem we obtain the analogue
of Denjoy’s theorem for approximate symmetric derivatives. (It may be
of interest to note that Marcus [4] obtained the analogue of Denjoy’s
theorem for approximate derivative.) Also it is shown that under certain
conditions the approximate symmetric derivatives belong to Zahorski’s
class M,. In our proof we require f{) to be in Baire class 1. Since this
property of f{) is not known, we give certain information regarding it.

LeMMA 2. Let g be defined on an open interval I and be finite on a dense
subset of I. Then

{w:xel; g(2) = + 00} < {2:7wel; w(2,g) = o0}
and the sel
{Z:xel; w(2,g) = oo}
18 closed in I.

The proof is simple and hence omitted.

LEMMA 3. Let the set G be open in I, where I is an open interval, let f
be approximately continuous, let f) ewist finitely in G and let w(z, f3)
< oo in G.

Then for all real numbers a the sets {z: f0)(x) < a}NG and {z: fi)(z)
> a}N@G are F,.

Proof. Let (a, ) be a component interval of G and let

I, =[a+ 1, 8-7],

where n is chosen such that « < a+1/n < f—1/n < B. Since w(z, f{)) < oo
on I, and f{) is finite on I,,f® is bounded on I,. Hence, by Corol-
lary 2, f is continuous and f(’) exists on I,. Hence f(‘) is of Baire class 1
on I,. So the sets {z:f{)(x)<a}nI, and {z:f8(x)> a}nI, are F,
([9], p. 141). Consequently,

{w: fD(z) < a}n@ = UU({w fQ(z) < a}nI,),

where the last union is taken over all components of G, is an F,. Similarly,
{z: fQ(x) > a} NG is an F,.

THEOREM 6. Let I be an open interval, let f: IR be approvimately
continuous, and let f{2) exist on I and be finite on a dense subset of I. If w (w, fi})
< oo holds except for a countable subset of I, then f3) is of Baire class 1.

Proof. Let

={@:ael; 0@, fO) = oo}, B, ={z:zel;fl(a) = +oo}.

Then, by Lemma 2, E, < F and the set E is closed in I. Also, by
hypothesis, F is countable Let @ = I —E. Then G is open in I. Also f)
is finite in @ and w(z, f()) < co in'G. Hence, by Lemma 3, the sets
{z: fQ3 @) < a} NG and {s: f“)(w > a} NG are F,.
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Since ¥ is countable, for any closed interval [a,b] = I the sets
{z: fO(2) < a}N[a, b] and {z: fO(z) > a}N[a, b] are F,. Hence fL) is of
Baire class 1 [9].

LEMMA 4. Let [a,b] = I, where I is an open interval, let f: I—>R
be approximately continuous, and let f(l) exist, possess Darboux property
and be of Baire class 1 on [a, b]. If, for an open interval (a, B), the set

{z:zela, bl;a <f(1)(w ) < B}

is nmon-empty, then there i3 a point on [a, b] for which fV exists and lies
between a and f.

Proof. Suppose to the contrary that there is an open interval (a, f)
such that the set {z:ze[a, b]; a < f{)(x) < B} is non-empty but contains
no point where f exists.

Let B, = {:xe[a, b]; f® exists and f(x) < a} and Ef = {x: v [a, b]; fO
exists and f"(x) > }. Let A, denote non-degenerate components of E,.
We shall prove that their interiors (relative to [a, b]) form the comple-
ment of a perfect set. Since f{) is bounded from above by a in the
interiors of A4, and f{) has Darboux property, the values of f{ at end

points of A, are not greater than a. Hence on the closed intervals A—k,
f% is bounded from above by « and, by Corollary 2, f) = ), and two

different A, x cannot have a common point. Similar is the case for E’.

Let P be the perfect set in [a, b] whose complement is the union of
the interiors (relative to [a, b]) of all non-degenerate components of E,
and E’. Let :vo eP and let I, be any open interval contalmng Zy. Then there
are points #' and #'' in IyN[a, b] such that f)(z') > f and f&(2") < a;
for, if f(z) < B for all zeI,N[a, b], then, by Corolla,ry 2, f‘” ex1sts on

I,n[a, b]. Since the set {x: z<[a, b]; a < fi) < B} contains no point where
fO exists, f¥(x) < a on I,N[a, b]. Hence I,N[a,b] is contained in the
interior (relative to [a, b]) of some components of E, which is confrary
to the fact that xyeI,NP. The other case follows similarly. We assert
that there is a point @, in I,NP such that f{)(x,) > # and a point «, in
I,NP such that f{)(x;) < a. For if z’' P, the assertion follows. If ¢P
then #’ is in the interior (relative to [a, b]) of a component of Ef. We take
to be that end point of this component which lies between z, and z’.
The other case can be proved similarly. Hence we conclude that
sup fO(2) > B, inf f(2)< a.
zelgnP zelgnP

So, the saltus of f{!) at each point of P relative to P is at least f— a.
Hence the function f{ is discontinuous at each point of P relative to P.
Since, by hypothesis, fﬁ,’ is of Baire class 1, this is a contradiction.

THEOREM 7. Let [a,b] < I, where I is an open interval, let f: I >R
be approximately continuous, and let f() exist, possess Darboux property
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and be of Baire class 1 on [a, b). If for an open interval (a, ) the set
{x: zela,b]; a < f < B} is non-empty, then the set

{: ze[a, b]; fO (@) exists and a < fV(2) < B}

18 of positive measure.

Proof. Suppose to the contrary that the set {x: ze[a, b]; a < fO(x)
< B} is non-empty but the set E = {x: z<[a, b]; f exists and a < fV(x)
< B} is of measure zero for an open interval (a, B).

Let

= {x: zela, b]; fap a}
= {z: ze[a, b];fé;))ﬂ}'

By Lemma 4 the set F is dense in itself; for if xye ENI,, where I,
is an open interval, then since f“) possesses Darboux property, there is
a point @, (x, # @) e IyN[a, b] such that f0)(z,) lies in (a, ). Choose a
closed interval J = I,N[a, b] which contains 2, but not z,. Then, applying
Lemma 4, there is a point x,eJ such that fV(x,) exists and lies in (a, ).
This shows that E is a perfect set, where E is the closure of E.

Let xye ENnI,, where I, is an open interval. If E,NnI, = 0, then
f8(z) > a for all # in I, and, by Corollary 2, f is continuous, f™ exists
and f) = f@ in I,. Hence, by a result of [5], we have m(ENI,) > 0.
This contradicts the hypothesis that m(E) = 0. Hence E, NI, # 0.

Similarly, it can be shown that E*NnI, #0. Thus E c E,nE?,
where E, and E’ are the sets of all limiting points of E, and E?, respec-
tively. Let now x,e EnI,, where I, is an open interval. Then there are
points z,, , and x, such that z,¢EnlI,, x,e B’ NI,and z,¢E,NI,. Since
by hypothesis f{}) satisfies Darboux property, for any &, 0 < ¢ < (8—a)/2,
there are points z,, x, in I,N[a, b] such that

B—e<fOm)<p, a<fQas)<ate.

and

Hence, by Lemma 4, there are points «; and «; in I,N[a, b] such
that fO(2;) and fO(x;) exist and

B—e<fWDx)< B, a<fO@)<a+te.
So 2, and 23 are in EnI,. Since ¢ is arbitrary,
sup f(«) >4, inf fQ(@)<a
zeEr\Io xcEnIo

Thus the saltus of f{(z) at z, relative to X is at least f —a and hence
f9)(x) is not continuous at , relative to K. Since x, is any arbitrary point
of E, no point of E is a point of contiruity of f(’) relative to E. But since
9 is of Baire class 1, this is a contradiction. This completes the proof.
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From Theorem 7 one easily deduce the following analogue of Denjoy’s
theorem for approximate symmetric derivatives:

THEOREM 8. Let [a, b] = I, where I is an open interval, and let f: I >R
be approzimately continuous on [a, b]. Let 1) ewist, possess Darboux prop-
erty and be of Baire class 1 on [a, b].

Then for any two reals a, B (a < B) the set {x: ze[a, b]; a < fO(x) < B}
18 either empty or of positive measure.

COROLLARY 3. Under the hypotheses of Theorem 8, if f&) > 0 for almost
all x on [a, b], then f is non-decreasing on [a, b].

Proof. Suppose to the contrary that there is a point é<[a, b] such that
f(&) < 0. Choose a, 8 such that a < f{) < g < 0. Then the set {z: ze[a, b];
a < f) < B} is non-empty and hence it is of positive measure. But this
contradicts the hypotheses. So f{)(x) > 0 everywhere on [a, b] (see also
[7]). Applying Theorem 1, we have f is non-decreasing on [a, b].

COROLLARY 4. Under hypotheses of Theorem 8, f{e M,.

Proof. Since f{) is a function of Baire class 1, the sets

= {z:xe[a, b]; f“)(a: > a} and E, = {z: ze[a, b]; fO < B} are F, for
arbltrary a and g [9].

Let £eE® and let J be any one-sided neighbourhood of & Then £ed
and fO (&) > a. Hence E* NnJ # 0. So, by Theorem 8, m(E*NJ)> 0.
Thus E°e M,. Similarly, E;e M,. Hence fQe¢ M,.

I offer my sincere thanks to Dr. S. N. Mukhopadhyay for his kind
help and suggestions in the preparation of the paper. I also thank the
referee for his comments in the improvement of certain results.
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