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‘One more definition of the curvature
and torsion of smooth curves

by GINTER SUCHANEK (Gliwice)

It is the aim of this paper to introduce Frenet's trihedron for curves
of the D' type (differential curves). The classical definitions cannot be
applied, of course, to these curves, as they assume the existence of con-
tinuous derivatives of the second or third order of a vectorial function
representing this curve. Thus it has been necessary to introduce new
definitions, and I am going t6 prove that in the case of curves belonging
to the O* or (? type they conform to the classical ones. )

Various suggestions have been made of introducing the curvature
for the curves:

(1) r =r(s)eD.

In [3], for instance, definition (1) has been applied to a flat cage.
As the curvature of the curve ¥y = y(2)e.D* at the point P the expression

128
# = lim —— has§ been taken, where § is the area between this curve
d—0

and the gtraight line I, which runs parallely to the tangent at the point P
at a distance d; I is the distance between the two points of intersection
of this curve by the straight line L. This definition does not comprise
all the points of curve (1), at which, according to the classical definition,
the curvature is equal to 0.

I am going, therefore, to introduce a somewhat different definition,

Let curve (1) be flat, while |r'(s)] =1 (Fig. 1). Throungh a given
point P there are plotted a tangent 7' and an oriented normal N; to the
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tangent T we plot two perpendiculars p’ and p*' at a distance a from
the point P. For a sufficiently small ¢ we can consider two algebraic
areas P’ (a) and P’ (a), confined by the tangent T, by curve (1) and by the
straight lines p’ and p'’ respectively. The areas are regarded as positive
(negative) if they are located on the positive (negative) side of T, as
defined by the orientation of N.

Let P(a) = |P'(a)+P(a)] (*).

DERINITION 1. By a curvalure of the order a = 2 we understand the
value
(2) # = lim

a0 @&

aP®@

a

if such a limit exists. Instead of #® we shall simply write . If, for
example, the curve K consists of two semicircles with the radii » and o,

1|1 1 . , )
joined together as in Fig. 2, # = E.? s will exist at the point P,
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Fig. 2

while I is a curve of the type C* only, whereas ##* = 0 at every point.
#') does not exist in the case of a > 3.

TrarmorEM 1. The definition coincides with the classical definition when
r =7(8)eC® and o« = 3.

Proof. If an axis # is tangent to a curve at the point z = 0, this
curve may be locally represented as y = ¥ (z), and when developed,
it gives
(3) y =3y (0)#*+ 0(a?).

By (2) and (3)

fd y''(0) «°

# P yax N

(4) Ao (O St ) PYE T L
3 aw @ a0 @ | | el a? '_a 3

() Thus P(a) does not depend on the orientation of N.
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a
[ O(x* dw
because ]im—‘i—g——— =0 and thas # =", #* is the curvature
a0

according to the classical definition.

Note. The relative curvature # = 4+#* may also be introduced
in quite the same way as in the case of the curves C? (cf. [2]).

Let us assume now that (1) represents a spatial curve. Through the
tangent we plot at point P a pencil of planes, projecting on each of them
the given curve (orthogonal projection). |

DEFINITION 2. By a curvature of the order a of curve (1) at the point P
we understand the finite maximum of s(?(6), where the symbol #(0)
denotes the curvature of the order « in projection (1) on to a plane forming
< 6 with an optionally determined plane in the pencil of planes 0 < 0§ < T,
if such a maximum exigts.

DerFINITION 3. By a curvature deflection K™ of the order o of a flat
tim @) =F" (@)
a0 a

(4), where a, P'(a) and P''(a) mean the same as in Definition 1.

DEFINITION 4. By a curvature deflection of the order o of curve (1)
at the point P we understand the maximum K©(6), where K )(6)
denotes a curvature deflection of the order a of projection (1) on to a plane
forming < 0 with a determined plane in the pencil of planes, if such
2 maximum exists.

DEFINITION 5. An osculating plane at point P of curve (1) is a plane =
that passes through a tangent at P with one of the following properties:
(i) There is such an « that 0 < #'°’< oo and projection (1) on =z
has the flat curvature #(¥; (ii) There does not exist such an « that
0 < o < oo, but for.an « we have 0 < K < co and K@ is realised
on .

THEOREM 2. If one of the two conditions (i) or (ii) is fulfilled, the osou-
lating plane is determined uniquely.

Proof. Let P be the origin of a coordinate system, where the axis @
iy tangent to the curve at P. We may, then, represent curve (1) locally
in the following way:

curve (1) we understand the expression K® —

(6) y =y®), =z=z().

Let us rotate the coordinate system about the x-axis and project (1)
on to the resulting planes (2, ¥).

Considering the fact that belween the coordinates of the points in
various systems there occur the relations

(7) g =ycosf+25inf, Z= —ysinb-+tzcosl, Zz =ur,
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the projections of the curve on various planes assume the following shape:

(8) 7 = y(w)cos H+42(2)sind.
Hence
a
a [F(@)de
.;f(“)(ﬂ) = lim | ————
a—0 a

= |4,-c08 0+ B,-sino),

where
a a
e [ y(@)ds a [ 2(x)dw i
IAal = ]jm___Lf-___, = 3?“(0), IBal = him ._:i‘___;.___ — W(a) (_)'
a0 a a—0 | a : 9

Assuming (i), we have A%+ B3> 0 and #°(6) takes its maximum
exactly for

A B
08 = ——— ginf = ———2 -,
VAI+ B’ VAL BT
Then
(9) H® =VA;+B; (%)

and this is a formula for #® in the three-dimensional case.
Attention should be drawn to the fact that if for a given a, 0 < #*
< oo, then #¥ = 0 for f < a, whereas # = co for y > ¢. Thus there

. B
is a unique osculating plane, and it forms <X 0 = a.rctgA—" with the

plane (z, y). If #@ =0, but 0 < K < oo, the theorem may be proved
in the same way, where

a —-a
af [ ydz+ [ ydax)
A, =lim—* - -y, By=1lm
a0 a a—0 a

a( [ zdw+ ]‘ 2dx)
0 0

a

Example. Let us take a circle with the radius R. We shall cut it
through at point B and draw a straight tangent p to the circle at point 4,
which is situated on the straight line OB. Next we shall deflect one half
of the circle in such a way that the part which is located on the right

(®) It may be easily proved that I/A§+B§ does not depend on the choice of
the initial plane (z, y).
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of point A will'lie in the plane which is perpendicular to the plane pre-
gented in the drawing and passes through the tangent p (Fig. 3).

Let us calculate,s# at point A.

Because the curvature according to the classical definition of the

1 o . . :
circle is equal to T the semicircle will be equal — according to this
definition — to 1 so that 4; = L. B —-13

o 2R’ *TorR’ T TR

— 2 B
Hence # = I/A§+B2 = T‘;/_E’ where as 0 = amctgf:l, i.e. the
. 3

osculating plane is the plane y = 2. Let us note the fact that, at point
A, # = 0 and K® = o, and that #? do not exist for the case a > 3.

THEOREM 3. When the curve r = r(8)eC? and a = 3, Definitions 2
and 3 conform with the corresponding classioal definitions.

It #* # 0, there exists a plane, called an osculating ons, Which:. has
the property that, from all the orthogonal projections on to the pencil
of planes passing through the tangent at the given point, the curvature
of the projection is the largest, being equal to the curvature #* of the
given curve ([1], p. 201, 202). And because #* = s in the case of a
flat curve, this plane is also an osculating plane according to Definition
5. Let us determine such a coordinate system that the plane (z, y) will
be osculating to » = r(s) and the z-axis tangential at the given point.
Let £,; u, be the elementary vectors on the x-axis and the y-axis, res-

pectively. In such a case
L]

r=st,+ %'32~n0+0(3’)

in a neighbourhood of point #(0), [2]. This curve behaves like an even
function, and K®), being the limit of the difference of two areas with
the same symbol devided by a°, tends towards 0, as the factor [O(s®)ds
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[
is of a higher order. It might be gaid that K™ is the “measure’ for the
deflection of the given curve (1) from its “C* standard”.
Let us take y = ba® and calculate o and K:”’ at point O

2b [ w*de |
H = 3 lim 0 — = 2b; g(-s) = 0.

a—0 a

Let us take one branch, e.g. # < 0 and rotate it about the z-axis; then
# =0 but K® = 20.

DEFINITION 6. Let us assume # = r(s)eC?, co> #™ £ 0. As a
normal vector of the order a(n) at point P we denote a unit vector lying
in the osculating plane which is perpendicular to the tangent vector
and directed towards the projection of the curve on this plane, if the
projection is situated entirely on one side of the tangent.

As" a binormgl vector we assume b =t xn.

DermNITION 7, By 8 rectifying plane of curve (1) we understand
a plane which is perpendicular to the osculating plahe and passes through
the tangent.

DrriniTION 8. By the torsion of the order fi of curve (1) at point P
we understand the expression t» for which the module (9)

@) — i ¢ (a)
= .:Eza/ SP(a)’

Q@) =1Q'(@)—~Q"(al; B>3,

where Q' (a) and @'’ (a) are defined for projection (1) on the rectifying
plane in the same way as P'(a) and P''(a) in Definition 1. This also con-
cerng P (a), but it is necessary to talke projection (1) on the osculating
plane. Instead of z* we shall simply write =. The sign of ¥ is to be
determined in the following way:

We take point B which does not coincide with point P, at which
we are going to determine the sign of . Next we take the osculating
planes to (1) at the points B and P. The edge of the intersection of the
planes is turned towards the semispace, to which is also directed the
vector ¥, tangential to the curve at point P. 7" is provided with sign ()
if the turn at an acute angle from the plane at point B with a smaller
value of the parameter to the osculating plane at point P with a larger
paranieter value occurs in such a direction that a right-handed screw

turned in the same direction would move in conformity to the twist of
the edge.

TuEOREM 6. This definition conforms to the classical definition when
B =4, r(s)eC® and # +#0.
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Proof. We may write [2]
H? H
r =(S—-—é— Sa)t-l—(—z—' S“-[—%.W’S’)no—l—(% -??‘F*'Ss)b-{-O(‘Ss).

Let the z-axis be a tangent at point P and let it be directed according
to the rising s, let the y-axis be parallel to n and the z-axis parallel to b,
and we shall obtain around point P (?)

(1)  y =32 +0(%); 2=3H < 2*+0(sf), H =H",

where v* denotes the torsion according to the classical definition. We
multiply the second equation (11) by.dz and integrate from 0 to a. Next
we divide both sides by a* and pass to the limit; when a — 0, we get

4]fzdw+}a zdo| 1
lim ———* =_#*17"; lim—
a—0 a 3 a—»0 ' f?/dwl

ad 3
=';f*.

Hence the limit of the product is equal to 7*, i.e. T =7* (note the
fact that the projection on to the ogculating plane behaves like an even
function, whereas a projection on to the rectifying plane behaves like

yhk

1
|
N
\
R
=Y

TFig. 4

an odd function around point p). The signs will also be the same as those
resulting from their determination [2]. The curves of type C® have
7 < oo at the points at which # # 0. The curve shown in T'ig. 3 hasg,
at point 4, 7 = oo, whereas 7 = 3. In the case of curves of the C? type,
™® =0 if # #0.

(® P is the origin of the coordinate system.

b — Annales Polonici Mathematiel XXV
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DEFINITION 9. By a torsion deflection of the order f we understand
tlie expression

(8) — ¥ ﬁ‘lQ’(a’)_Q’(a’)l . >
4 B_)I? P Pa) p=>3,
Q' (a), Q"' (a) and P(a) have the same.meaning as in Definition 8. y* for
a curve of the C® type, for which 57 s 0 is equal to 0, as its projection
on to a rectifying plane, behaves like and odd function.

(12)
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