COLLOQUIUM MATHEMATICUM

VOL. XXXI 1974 FASC. 2

CHARACTERIZING DISCRETE VECTOR LATTICES

BY

J. QUINN (CHARLOTTE, NORTH CAROLINA)
AND R. REICHARD (ATLANTA, GEORGIA)

Introduction. Conditions on a vector lattice which either imply or
are equivalent to its being a discrete vector lattice have been of interest.
In [6] Nakano characterized all Dedekind complete, discrete vector lat-
tices. Zaanen in [9] obtained a necessary and sufficient condition for
a Dedekind o-complete vector lattice in which every principal band has
a strong unit to be discrete and finite-dimensional. In [2] Komura and
Koshi showed that every nuclear vector lattice is discrete. It is the purpose
of this paper to obtain two characterizations of discrete vector lattices.
One uses lattice properties only and the other combines lattice properties
with topological considerations. _

We shall prove* that an Archimedean vector lattice F is discrete
if and only if it has sufficiently many projections and every f in E* (the
positive elements of F) can be decomposed into components {f,: ae A}
such that if g is a component. of f, then inf(g, f,) = 0 or inf(g, f,) = f.
for all ae A. The conditions assumed in this result combined with order
separability imply the Egoroff property ([8], Theorem 2.3, p. 34). Since
a vector lattice which is regular (the condition of [9], Theorem 6.3) also
has the Egoroff property (see Section 1 of Chapter 1 in [8] or [3], Chap-
ter 10), we can see a relationship between our result and Zaanen’s
result.

In the last section we shall show that the existence of a collection
{ll-ll.: ae A} of compatible continuous seminorms defining a locally convex
Hausdorff topology on a universally complete vector lattice is necessary
and sufficient for it to be discrete.

1. Preliminaries. E will represent an Archimedean vector lattice
throughout this paper.

* This research was supported in part by a UNCC faculty research grant and
in part by N.S8.F. Grant }GY-5362.
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The element f # 0 in F is called an atom or a discrete element whenever
it follows from 0 <u < |f], 0 < v < |f| and inf(u,v) =0 that v =0
or v =0.

It is known ([9], Theorem 4.1) that if f is an atom and 0 < % < |f],
then % = af, where a is a real number.

A set {f,: ae A} of positive elements generates E if the elements
are mutally disjoint (inf(f,, f;) = 0 if a # ) and inf(f,, #) = 0 for all
ae A implies that z = 0.

A discrete vector lattice is an Archimedean vector lattice with a gener-
ating set of discrete elements.

Note that we do not assume that a discrete space is Dedekind complete
as in [6]. It is true that F is discrete if and only if its Dedekind completion
is discrete and the cardinality of the generating sets is the same (see [5],
Theorem 3.3, p. 477). In fact, one can use this latter statement to remove
Nakano’s restriction of Dedekind completeness and his characterizations
remain valid.

In the sequel, we shall denote a principal band in F generated by an
element z by B(x). Given any elements y and z in E*, we write [z]y for
the projection of y onto B(x) whenever this projection exists. Recall that

[x]y = sup{inf(y, nx): ne N} = sup{z: 0 <2< y,2eB(2)}

whenever this supremum exists. A principal band B(«x) in ¥ is a projection
band if [x]y exists for all ¥y in E*. We refer the reader to [9], p. 163-165,
for a discussion of projections. A vector lattice is said to be of strong
countable type if every set of mutually disjoint elements is at most
countable.

Any of the usual sequence spaces (linear subspaces of the space of
all real sequences which contain the finitely non-zero elements and are
Archimedean vector lattices) are examples of discrete vector lattices. In
fact, we have the following

THEOREM 1.1. A discrete vector lattice is isomorphic to a sequence space
or a finite-dimensional space if and only if it is of strong countable type.

Proof. Since every sequence space contains a countable collection
of discrete elements which generates the space, it is of strong countable
type. The reasoning is similar for a finite-dimensional space where the
above-mentioned collection is finite.

Now suppose that E is discrete and of strong countable type. Let
{p.: ae A} be a generating set of discrete positive elements in E. Then
{P.: ae A} must be countable and we can re-index the set to {p,: neP}
where P is a subset of the positive integers. If P is finite, then we immedi-
ately get that F is finite-dimensional ([9], Theorem 4.2). So, we may assume
that P is the set of all positive integers. Since a band generated by an atom
is always a projection band ([9], Theorem 4.1), we know that, for every
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fin E*, [p,]f exists for all » in P. It also follows that [p,]1f = a,p,, where
a, is a real number. Define the function f on P by f(n) = a, for each =
in P. f is a real sequence and is defined uniquely for each f in E*. If f
is any element in ¥ (not necessarily positive), we can define f = f* — .
Let M = {f: f corresponds to each f in F as described}. M is a sequence
space and F is isomorphic to M. The theorem is established.

Therefore, in the presence of strong countability, one can think of
a discrete vector lattice as a sequence space or a finite-dimensional space.
One can also think of a discrete space as a vector lattice of measurable
functions over a completely atomic measure space as long as the character-
istic function of each of the atoms in the Boolean algebra of measurable
sets is included. Such a space of functions would be isomorphic to a se-
quence space if and only if the measure space is o-finite. Hence, in the
theorems in the following sections, the reader should keep in mind the
corresponding characterizations for sequence spaces and spaces of meas-
urable functions over a completely atomic measure space.

2. First characterization. The element f in a vector lattice ¥ is a com-
ponent of ¢ in E* if and only if inf(f, g—f) = 0. E is said to have prop-
erty (P) if for every fin E* there is a collection {f,: ae A} of components
of f such that sup{f,: ae A} = fand if g is a component of f, then inf(f,, g)
=0 or inf (f,,g) =f, for all a in A.

THEOREM 2.1. An Archimedean vector lattice E is discrete if and only
if E satisfies (P) and every mon-zero primcipal band contains a non-zero
principal projection band.

We note that property (P), at first glance, appears to be quite strong
and, in fact, appears to lead to the existence of atoms. However, C[0, 1],
the continuous real-valued functions on [0, 1], satisfies (P) and does not
contain any atoms. Béfore proving this statement and Theorem 2.1 we
need some information concerning components of elements in a vector
lattice.

LEMMA 2.1. Let E be an Archimedean vector lattice and f,e,, e, be
elements of E™.

(i) If e, and e, are components of f, then sup(e,,e,) is a compo-
nent of f. Y

(ii) If ey < ey and ey, e; are components of f, then e, 18 a component
of e,.

(iii) If e, and e, are components of f,then inf(e,, €,) is a component of f.

A proof of this lemma can be found in [8], Remark 2.3, p. 31. As the
proof is not difficult and follows from standard lattice identities which
can be found in [3] or [7], we will not produce it here.

Example. C[0, 1] satisfies (P). Choose f> 0 in C[0,1] and let
U = {»: f(x) > 0}. U is open and is, therefore, the union of a countable
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collection F' of disjoint open intervals. The intervals in F' are of the form
(a, d), [0,D), (a,1] or [0, 1], where a, be [0,1] and a < b. For simplicity
we will assume that all the intervals in # are of the form (a, b). It will
be clear from the proof for this situation how to handle the others.

Assume F = {(ax, b,): k =1,2,...} and for each k let f, = fr,
where y, is the characteristic function of (ay, b;). It is not difficult to see
that each f, is continuous and is a component of f. Also, we have
sup{f,: k¥ =1,2,...} ={.

Suppose there is a component g of f and a positive integer k¥ such that
inf(g, f,) # 0 and inf(g,f,) # fi.. Letting ¢’ = inf(g,f,) Wwe see that
¢’ and f,—g¢' are non-zero components of f,.. (Apply Lemma 2.1, (iii)
and (ii).) But then

{w: g'(2) > 0} {22 fi(2)—g'(2) > 0} =@
and
{z: g'(x) > 0}u{w: fi(x)—g' (). > 0} = (ag, by).

This contradicts the connectedness of (a;, b;).

Proof of Theorem 2.1. Assume that Z is a discrete vector lattice
Let B(u) be any non-zero principal band in E. Since F is discrete, there.
is some atom p in E* such that 0 < p < |u|. Since every band generated
by an atom is a projection band, we infer that B(p) is a projection band
contained in B(u). Now, let fe E* and let {p,: ae A} be a generating
set of positive atoms in E. For each ae 4, let f, = [p.]f. It follows easily
from the theory in Section 3 of [9] that each f, is a component of f and that
sup{f,: ae A} = f. Furthermore, it can be shown using [9], Theorem 4.1,
p. 166, that each non-zero f, is an atom. Lemma 2.1 and what has
been established above can now be used to see that if g is any component
of f, then inf(g, f,) = O or inf(g, f,) = f, for all ae A. We have established
the necessity. '

For the sufficiency, choose f in E* and let {f,: ae 4} be the collection
mentioned in (P). We shall show that every f, is an atom. Let 0 < u < I
By assumption, there is a principal projection band B(%') = B(u), where
u’ > 0. Also, B(u') = B(f,) since u < f,. Now, [4']f = v is a component
of f and ve B(u') < B(u) < B(f,) implies that inf(v, f,) # 0. But then
using (P) we have inf(v,f,) =f,. Hence v >f,. But v > f,, and v and
f. components of f imply that f, is a component of v (Lemma 2.1 (ii)).
Hence, inf(f,,v—f,) =0. But, v,f,eB(f,) implies that v—f,e B(f,).
Then inf(v—f,,f,) =0 if and only if v—f, = 0. Hence v = f,. Then
f.€ B(u) which implies that B(u) = B(f,). Nowif 0 < u, v < f, and inf(u, )
= 0, we must have « = 0 or v = 0 since if 4 % 0 and v # 0, then B(u)
= B(v) which is impossible if inf(u,v) = 0. Hence each f, is an atom.
Now let {ps: fe B} be a maximal collection of mutually disjoint atoms
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in E. This collection is then a generating set of discrete elements in F
and F is discrete.

A vector lattice E is said to be order separable if every subset A of
E that has a supremum in F contains a countable subset A’ such that
supA = supA’. It is not difficult to see that if E satisfies the conditions
of the previous theorem, then every fin E+ can be decomposed into a count-
able number of components if and only if ¥ is order separable. However,
E need not be a sequence space as the example £ = {f: f is a bounded
real-valued function on an uncountable set X, where f is non-zero
on a countable subset} illustrates. Here E is order separable and discrete
but not of strong countable type and not a sequence space.

3. Second characterization. A vector lattice F is universally complete
if it is Dedekind complete and sup{x,: ae A} exists in £ whenever
{#,: ae A} is a collection of mutually disjoint elements in E. A seminorm
I-Il on E is said to be compatible if |z| < |ly|| whenever |z| < |y| and x
and y are in E. ||-|| is said to be continuous if inf {||x,||: ae A} = 0 whenever
0< 2,0 (i. e., inf{x,: ae A} =0 in F and {z,} is a net in EF which is
directed downward). We shall prove the following

THEOREM 3.1. A wuniversally complete vector lattice E is discrete if
and only if there is a collection {||-|,: ae A} of compatible continuous
seminorms defining a locally convex Hausdorff topology on E.

Komura and Koshi ([2], Theorem 3) proved the related result that
a locally convex vector lattice E(T') (T a locally convex Hausdorff topology
on F generated by compatible seminorms) is discrete whenever E is De-
dekind complete and 7' is nuclear.

Before we prove Theorem 3.1 we shall introduce some terminology.
A linear functional ¢ defined on FE is said to be order continuous if
inf{p(x,): ae A} = 0 whenever {x,} is a net in E which converges down
to 0. Let E, be the set of all order continuous linear functionals on E.

Proof of Theorem 3.1. If ¥ is discrete and {p,: ae A} is a generat-
ing set of positive atoms in E, then for each a in A and f in E*[p,]f
= a,P,, Where a, is a real number. Hence for each ae A and fe E* we can
define | f|, = a,. For an arbitrary f in £ we define |f|l, = |||f]l,. Each
Il |l is well defined and {||-|,: ae A} is a collection of compatible continuous
seminorms defining a locally convex Hausdorff topology on E.

On the other hand, assume Z has the described collection of se minorms
{II'l.: ae A}. It is not difficult to show that E’ (the topological dual)
is contained in E, so that E, must be separating on E. Using a result
of Masterson ([4], Corollary 3) it follows that ¥ is isomorphic (algebraically
and lattice) to a space M (X, S, u) of equivalence classes of u-measurable,
almost everywhere finite-valued functions on a completely additive,
localizable measure space (X, S, u). We shall denote by 8* the Boolean
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algebra of equivalence classes of measurable subsets in S. Also, given
any f in M(X, S, u), we shall denote its carrier in 8* by f*.

Let g be any non-zero element in ¥ = M (X, §, u). Under our as-
sumptions on E we shall show that ¢* must contain an atom. (An afom
¢* in a Boolean algebra is a non-zero element such that whenever ¢* = y*
2 0%, then y* = ¢* or y* = 0*.) Choose any f in B+ with 0* %= f* c ¢
and 0 < u(f*) < 4 oo. We shall show that f* (and hence ¢g*) must contain
an atom.

Assume f* does not contain an atom. Then there exist elements
@), ff(2) in 8* such that f*(1)uf*(2) =f* f*@Q)nf*(2) = 0* and
p(f*() = u(r*2)) = $4(f*). We can continue this process so that for
n=1,2,... and i,=1 or 2 we can choose f*(i,4,,...,4,,1) and
F* (41, 825 -y iy, 2) With

f*(";l’im °°°7in71)uf*(";17";27 veny lpy 2) =f*(’i177:2’ ey B),
f*("'ly":z’ “-9":7” l)ﬁf(il, ":27 '°-7'im 2) = 0*

and
1
.“(f*(in CYRERT ":m 1)) = .u(f*(":n Gay eeey Uny 2)) = El‘(f*(":niz’ ---yin))
1
=27,H(f)-

Note that for any sequence ¢,, %3, ... (¢, =1 or 2) we have

F¥(51) D [* (615 55) D vvo D [ (B1y Gy oveyiy) D .o
Also,
ﬂlf*(il, Tay ey by) = O*
n=
since

BV Gy s ey 8] = lim oo () =0,

Now for any sequence ¢,, ¢, ... (¢, = 1 or 2) let f(¢,, 5, ..., ¢,) denote
f multiplied by the characteristic function of f*(i,, 4,, ..., ,). Since E,
is separating on F, there is a continuous linear functional ¢ with ¢ (f) > 0.
Choose a specific subsequence i, 45, ...y %y, ... (4, =1 or 2) such that
@ (f(3,, 93y ..., 1)) > O for each n. This can be done because ¢(f(1)) +¢(f(2))
> @(f) > 0 so that at least one of ¢(f(1)) or ¢(f(2)) is strictly positive.

Let fy =f(i1), fa =Ff(i1y82)y ..y fo =Ff(i1y0sy...y4,),... Then f,
>f,=..., e(f,) >0 for each n and inf{f,: n» =1,2,...} = 0. Hence
inf {p(f,): n =1,2,...} =0. We can assume without loss of generality
that ¢(f,) >2¢(f.y,) for n =1,2,... If not, we could choose a subse-
quence. Now forn =1, 2, ..., let

hy, = (”/‘P(fnu)) (fa—Tns1)-
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(Note the similarity here with [1], p. 119, Criterion 2.) {k,} is a collection
of mutually disjoint elements in M (X, S, x) and since M is universally
complete, sup{h,: n =1,2,...} = h must exist in M. But

p(h) > @(h,) = (n)p(far )@ (fo) —@(far1)) > 2n—n =n.

Hence, ¢(kh) > n for each n, which is impossible. This contradiction
proves that f* and ¢* must contain an atom. '

Let {¢;: f< B} be a maximal collection of mutually disjoint atoms
in 8* For each 8 in B let p, be the characteristic function of ¢;. Then
{pp: Be B} forms a generating set of discrete elements for FE.

COROLLARY 3.1. A wuniversally complete vector lattice E is the space
of all real sequences or the space of all real n-tuples for some n =1,2,...
if and only if there is a countable collection {||-|,: ne N} of compatible
continuous seminorms defining a locally convex Hausdorff topology.

Proof. We need only show that the existence of a countable collection
of the described seminorms forces E to be order separable. This is true
because in a universally complete vector lattice the concepts of order
separability and strong countability coincide. Then, using Theorem 1.1
and the fact that the only universally complete sequence space is the
space of all real sequences and the only universally complete n-dimen-
sional space is the space of all real n-tuples, we have the desired result.

Let {x,} be any net in ¥ with 0 < x,{x. If we can show that there
is a sequence {7y} < {#.} such that 0 < ., {2, then we would have E
order separable. Since |-||, is continuous for each k, we have

inf{|le —2,|ly: ae A} =0 for k =1,2,...

For n =1,2,..., choose %,y {z,} such that z,,! and [©—z,m,l
<l/nfork =1,2,...,n Then for any ke N and any ¢ > 0 we can choose
K >0 such that 1/K < ¢ and K > k. Then

12 — @yl < LK < e for all n > K.
Hence
inf{||e — Zym)llx: ne N} =0 for k =1,2,...

But this forces 0 < 2,4l .
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