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Diophantine equations involving primes, II

by J. Woicik (Warszawa)

I have proved in [3] the following theorem: Let f and g be irreducible
polynomials of degree r with integer coefficients and the same leading
coefficient; m and » be non-zero integers. If arbitrarily chosen roots of f

and g generate the same normal field and } m/n is irrational, then there

M:M’ where z,y are in-
m n

tegers. For the special case f(r) = ax®+béw+ ¢, ¢(y) = ay®+bny+cn?
I have obtained in [2] the same assertion under a less stringent condition,
namely amn(n& —mn?) % 0. The aim of this paper is to generalize the
above results. The examples given at the end of the paper show that these

flw)  g(y)

results can be applicable is some cases, where the equation =

exists only finitely many primes p =

has infinitely many solutions in integers.
In the sequel @ denotes the rational field, and N is the norm from F
to @ for any number field F.

THEOREM 1. Let f,f,, ..., fr be polynomials defined and trreducible
over Q; 1, &, ..., £k any of their roots. Suppose that for each j < k, the field
Q (&) is normal and contains n. If there exists infinitely many integers x,y
such that

(1) fu@)fl@). ful@) = fly)  amd  fi@) are primes (L<j<F),

then there exists a polynomial h(x) with integer coefficients and two integers a, b
such that

(2) filaz+b)... filaz+b) = f(h(x)) ,

the polynomials filaz+b) (1 < j < k) have integer coefficients and f(h(x))
has no constant factor > 1.

We set K = Q(n), K;=Q(&), = |K|, ty= |[Kyl, y=4fr AL<j<k)
(| | denotes the degree of a field, later also the order of a group) and
prove first:
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LeMMA. Let a be an integer of K, f; an integer of K;, m,n; rational
tntegers # 0 (1L <j < k). If primes p,, p,, ..., P 8atisfy the conditions

_ Nu(By)
ny

Ny(a)

m

(P1P2e-Prymnymp) =1, p

DP1P2+- Pk =

then there exwts a system of integers conjugate to Bs's, say F7, ..., B, ...
B .., Ben® such that

f [ "1/ ” H B

j=1 11=1
i8 an algebraic integer.

Proof. Let j be any index <k, n=p,p...0x, qu= (Ps,f7)
1<i<tl), a= (n,a). We have

Pi = (p1, Ne (1)) | Nk,

and

Ne,a1i(p], N,(87) = (97, nsp1) = P
thus
(3) P1= GnGsz... Qs

is a factorization of p into prime ideals of K;. Further n = (n, Nga)|Nka
and Nga|(n"y, Nga) = (n", nm) = n, i.e., n = Nga. Since K C K; and qj,
are prime ideals of the first degree in K; we get

(n, a) = P1Py...Pk

where NgpP; = pj, p; is a prime ideal in K.
From (3) and the divisibility p;|p; we infer the existence of a system
817y S27y -ery 87y SUCh that

P;= Qﬂ'uqilu'"thj} .
Since W.sul(ﬂ;“) we get
Pilyss

ri
(8¢5
77=llﬁ1“7 Yi = PiCs,
i=1

Ng/(ys) = NZ(By) = p?n7 = Ni,(p)) Nx,(¢s) = p?Ng(¢e)),
ny = Ng,(¢;), ie, ¢lng.
Hence and from the divisibility

where

P1Pz..-Pila
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we infer

ﬂ=ﬁw ”pfnflla””i

=1 =1 j=1

k
which shows that a [] n7/8 is an algebraic integer.

=1
Proof of the theorem. Assume that there exists infinitely many
integers z, y satisfying (1). Let for each j <k

) file) =MD gy 1@

’

where f;, f are polynomials with integer coefficients and #;, m are integers.
Let a;, d, be the leading coefficients of f; and f, respectively. It follows
from the assumption that

Nglaix—
®) i = film) = Kv("'::'_’ll a‘!fl)’
a; Ny
Ne(@ayi—a
Do pia = fly) — DK ot )
G m

where lim |2;| = oo, lim |y;| = oo, pj are primes.
l—+o0 100

Let
k R r
Fa)=[[ffo) = Y Awr~t, flo)= D aw—.
j=1 i=0 i=0
We have
k
(6) R=degF=rZr,.
i=1

By lemma there exist an infinite subsequence of I’s (which without
loss of generality can be taken as 1,2, 3, ...) such that for a fixed system
of conjugates (s;;) of the numbers &, ¢y; is an algebraic integer, where

k
(7) ¢= a°1 [(a?_znf)", n= y,—
i=1 ” 1 7 (21— E('“)

i=114i=
We have

r 0+2Af/a'l r
W %=t whence im ¥ — 4o

R R
o] 100 1] a,
a,+ D, ailyt
i=1



262 J. Wéjeik

Without loss of generality we can write

(8) —%’—,;: where B=el/$', e=+4+1, &=1.
ap
Let L=K K,..K,. A= |L|. Clearly y;¢L. Denote by y(’)

(8=1,2,..,4) the conjugates of 5 in L in such a way that y; = y.
We get from (6), (7) and (8)

Y n(s)
Rr ~ _RIr
(9) limy{” = lim w; i =B,
100 00 ”” ﬂm)
j=1i=

where (&)@ — £
Let 4 be an algebraic integer generating L. We have

-1
(10) 9 = Zuﬂﬁ"” (8=1,2,..,4), wuy rational.

i=0

Solving the above system by Cramer’s formulae and passing to a limit
we get from (9):

v ¢ .. P77

(2) qo(2) (2)A—1
(11) lim ey — lim —— R L B
>0

100 et () [ v oo
yﬁ“ gW  gan-
14 .9 oy T L P
@ (@F-1  _(2) g+l (@1-1
(12) llmu,;_hm~——}—@~— 147 .. 9 vio 9 v O =0
o detb (0 [ e

1 19(1) ,ﬁ(l)f—l y?) 19_(/1)J'+1 19(1)1—!!

Since ¢y are algebraic integers, the numbers cu;(discd)? are rational
integers. It follows hence by (11) and (12) that for sufficiently large
the numbers u; are constant and

(13) ’llm=B, ’M,'z=0 (].=1,2,...,)~-1).
Hence by (13)

(14) m=B.

Let

Rir

(15) o) =14+ B]] [Ta—gn= Yo

j=14=1 j=0
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We shall show that the coefficients b; of the polynomial g are rational.
Since by (14) Be L we have bjeL (j= 0,1, ..., B/r—1). Therefore

A-1

by = 2 v d

=0

where v;; are rationals. Hence and from the formulae (7), (14) and (15)

we geb
Ai—1 Rjr

(16) n=g(m) = 2 (2 'v;w{)ﬂ“ .

izo j=o
Comparing the coefficients of #° we obtain

"Rir

Dlvpal=0 (i>0).
=0

Since this equality holds for infinitely many values x; we have v;; = 0
(¢#>0,j=0,1, ..., R/r). Therefore b; = v;, (j = 0,1, ..., R/r), and b; are
rationals.

For each j < k let Gy denote the Galois group of K;, H; the subgroup
of G4 leaving invariant K. Clearly

(17) |Hjl =17;.
Let &1, &7, ..., &/* (Tie @) be all the distinct conjugates of &
k ry
occurring in the product [] || (x— &%) and let &* occurs there with the

i=1i=1

multiplicity %¢. Clearly
uy
(18) 2 ki =rseq,
im1

where e; is the number of polynomials f,(z) (1 < v < k) divisible by fy(z).
By (15) we have

(19) n=g(&", A =g =n.
Since 7 generates K it follows that T;'Tye H;. Hence by (17)
(20) Uy KTy

It follows from (18) and (20) that at least one of the numbers % must
be greater than or equal to ¢; and we may assume without loss of
generality that

k]j = €5,
By (15)

(r—EMg(a)—n, thus (z—&)77 ¢ (@).
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By (19)
floE) = =o0.
Sinee f(g(z) = f'(9(z)) - g'(z) we get
(x— &7 f(9(2)) -
Since fj(x) is an irreducible polynomial it follows

fF@flg@) QA<j<h,

F()lf(g(@) .

By (6) and (15) the polynomials F and f(g) are of degree R. Therefore,
there exists a rational number C such that

flg(x)) = CF(x) .

Comparing the leading coefficients on both sides we get C = 1, i.e.

whence

(21) flota) = F o)
Let
(22) g2y =22,

where H (z) is & polynomial with integer coefficiets, N is an integer # 0,
a= Nn,, ..,nx. We choose from the sequence {z;}a+1 terms, say
X1y .oy Tay1 Such that

(23) (F(xe), Fap)) =1 for di+#7j.

The choice is possible since the least prime factor of F(x;) tends to infinity,
as is clear from the formula

F(x) = fil@)fol@) ... flxr) = pupa...pu -
Now, by the box principle there exist integers y, v, b, 2, and 2, such that
(24) x,=az,+b, 2z, =az+b, 1<pu<a+l,
1<v<atl, p#vr.
We take h(x) = g(ax+b). By (21) we have
f(r(z)) = F(az+ b)

what was to be proved as (2).

By (5) and (16) the numbers g(x,), fi(z,) (j = 1, 2, ..., k) are integers.
Hence and from (4), (22) and (24) we get

H(az+b) .- H(b) - H(r,) .- Omod N ,
7!(“4‘ b) = ?f(b) = }j(mll = 0mod; (1=1,2,..,k).
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This means, that the polynomials h(z), fi(az+ b) have integer coefficients
(j=1,2,..,k). It follows from (23) and (24) that

(F(az,+b), F(az,+b)) = (F(z,), F(z,)) = 1.

Therefore F(ax+b) has no constant factor > 1, which completes the
proof.

Remark 1. It follows from the conjecture H of A. Schinzel [1]
that the condition given in Theorem 1 as necessary for the existence of
infinitely many integers z, y satisfying (1) is also sufficient.

Remark 2. The method of proof of Theorem 1 works also for
polynomials defined over imaginary quadratic fields. More precisely,
holds the following

THEOREM 2. Let f(x), fi(z), ..., fr{x) be polynomials defined and ir-
reducible over an imaginary quadratic number field R, n, &, ..., & any of
their roots. Suppose that for each j < k, R(&;) 18 a normal extension of R
contatning n. If there exists infinitely many integers z,y of R such that
(fi=)) are prime ideals of R (1 <j<k) and

H@) fol@) ... ful@) = f(y) ,

then there exists a polynomial h(x) with coefficients integral in R and a, b
integers of R such that

f(h(z) = filax+b)...f(ax+b) .
The coefficients of all the polynomials fiax+b) (1 < j < k) are integers
of R, N f(h(x)) has no constant factor > 1.
A similar but easier and purely algebraic proof can be given for
THEOREM 3. Let K be an arbilrary field, X = (x,, ..., Za), f(2),
fu@), ..., fr(z) be polynomials defined, irreducible and separable over K, %,

&y ooy &k any of their roots. Suppose that K (&;) is for each j < k a nmormal
extension of K containing n. The equation

File(X) . fulp(X) = flw(X))

with the side condition that all fi{p(X)) are irreducible over K is solvable
in polynomials ¢(X), w(X) if and only if there exists a polynomial h(zx)
defined over K such that

fi(@)...fulz) = f(h(2)) .

ExAMpPLE 1. There exist only finitely many primes p of the form

p_ 182249

_ 2!"‘ 4 i 2 .
5 225y4+ 51y%+1

I
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Indeed, any roots of the above polynomials generate the same normal

field Q() =1, Y21) and (2) does not hold since ' 25-225 is irrational. On
the other hand, the equation

415249

— 4 2
o5 = 225y%4- 51y 41

has infinitely many integer solutions, e.g. z = a,y = g, where a? — 7582 = 1.
ExAMPLE 2. There exist only finitely many primes p of the form

420241 2741
- 3~ 3

Indeed, any root of 42*—22°-+1 generates the normal field
Q(V—2,1—3) and (2) does not hold sinee }'2 is irrational. On the other
hand, the equation

4ot —222+1 24741
3 3

has infinitely many integer solutions, e.g. v = f§, ¥y = aff, where a?— 242
= —1.

Added in proof. 1. The result of [3] has been misquoted in Math.
Rev. 34, 2526; the condition on f and g assumed in {3] is more stringent
than the coincidence of their minimal splitting fields.

2. If we assume in (1) that fj(z) are powers of primes, the assertion
of Theorem 1 holds except for the statement concerning the constant
factor of f(h(z)) .
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