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Uniqueness of the solution of a tangential derivative problem
for an infinite system of non-linear integro-differential equations
of parabolic type

by Anprzes Borzymowskl and JACEK Ursanowicz (Warszawa)

Abstract. In the paper it is proved the uniqueness of the parabolic solution of the third
Fourier problem for the non-linear system of integro-differential equations (1) with the initial
conditions (2} and the non-linear boundary conditions (3) containing the tangential derivatives of
the unknown functions. The approach is patierned on that applied in papers [2] and [3] and
uses a lemma from [6].

1. The uniqueness of solutions of Fourier problems for second-order
parabolic equations and systems of such equations has been examined by M.
Picone, M. Krzyzanski, J. Szarski, P. Besala and others (see {1]-[5], [8]-
[11], [13], [15}-[20] and [23]) under the assumption that the boundary
conditions of the problems do not contain the derivatives of the unknown
functions in the directions not entering the closure of the domain considered.

Borzymowski [6] proved the uniqueness of the solution of the first
Fourier problem for a finite system of non-linear second-order parabolic
equations in a bounded domain with a non-linear boundary condition
containing the tangential derivatives of the unknown functions. In this paper
we prove an analogous uniqueness theorem concerning the third Fourier
problem for an infinite system of second-order integro-differential equations
of parabolic type in an unbounded domain. The reasoning used in the proof
is adopted from P. Besala’s paper [3] and is partly based on [6].

The uniqueness of solutions of boundary value problems for parabolic
integro-differential equations and their finite systems, with the boundary
conditions not containing the tangential derivatives, has been examined by
Krzyzanski [12], Lojezyk-Krolikiewicz and Szarski [14], Ugowski [21], [22]
and Zuk [24]. We would also like to remark that the result obtained in this
paper implies the uniqueness of the solution of a boundary value problem
whose existence was proved in [7] (see Remark 3 in the sequel).

2 Let R™*! be the time space of points (x, t), where x = (x;, ..., X,)€
eR™ (m > 2)and t > 0. In R"*! we consider a non-cylindrical domain =,
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whose boundary consists of m-dimensional closed domains 4, and 4,, placed
in the hyperplanes + = 0 and t = h, respectively (0 < h < x), and an m-
dimensional lateral surface o, situated between these hyperplanes. We denote
the intersections of Z, and o, with the hyperplane t+ = v by 4, and §,,
respectively. Furthermore, we set Q, = R™\4, and D, = (R™x(0, W)\E,.
Consider an infinite system of integro-differential equations of the form

(1) u(x, 1) = FOx, t, u(x, 1), u0(x, 1),
t
[ [ ®7(x, t, y, 7, u(y, 1), ulx, 1), u? (x, ) dydr, uli(x, 1)]
0 of) .
((x, t)e D),

where r=1,2,...; u=@"u® .. 4" with N, =max(n,r, n
being a fixed positive integer; ul(x,t) = (U (x,1),...,ud (x, n);
W(x, 1) = (W, (x, 0, uf (x, 1), .o ul (x, 0); 80 = (97, 99 ..) (1)
and Q¥ denotes a measurable subset of Q, depending in general on x.

We assume that on g, there are defined vector fields {/;], ..., {/,} and
81} - (5g) (where 1 < g, § < m—1) so that for each point (x, r)ea,, the
vectors Sy, ..., 8 corresponding to this point are tangent to S, and the
vectors Iy, ..., I, penetrate the domain Q..

An infinite system (1" (x,.#), u'¥(x, 1), ...) is called a solution of the (F,)-
problem if it satisfies (1) for (x, r)e D,, possesses the derivatives

dut?? du'® du! du'®
(dl,, X, f),T[m(X, 1), ) and (d 5 (x, 1), —‘Eﬂ—(xa 1), )

(where a =1,...,q; B=1,...,9 for (x,t)ec, and fulfils the initial
condition

2 u”(x, 0) = €3

(xeQq; r =1, 2,..) together with the boundary condition

du(r)

G) dl,

(x, t)+G('),:x t, u(x, t),d( (x, 1), ... d;m(x t)]
Sz

((x, )eay; r = 1, 2,...), where I, is one of the vectors I, ..., I,.
We make the following assumptions (?)

(*) The integral of a sequence is understood as the sequence of the appropriate integrals.

(3 The symbols {, v, w, z, ¢ and » in assumptions 3°—6° are understood as {
=(;1 CN) v= (vla rens vm); W= (Wla W, )a Z= (2110 212y vens zmmJ; i =(¢1v teve CN) and |
=(aees n') respectively.
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1° The surface o, is given by the equation

“) r{x,t =0,
where I'(x, t) is a function defined in a closed neighbourhood II of o, and

) . . .. or o*r
possessing in Il continuous derivatives —(x, t), ———(x, ) and

ox; 0x; 0x;
or
—(x, 0 (,] = )Y
Py (0 GJj=12..m
We assume that
o m 12

(5) grad?I'(x, t) = Z |:—-—(x r)J > I'

holds, where I'y is a positive constant.
2> The vectors [, (i = 1, 2, ..., q) fulfil the inequality

(6) COS(l‘, ﬁ) 2 Yo > 09

where y, is a constant and 7/ denotes the unit vector of the inward normal to S,
at (x, t).

3° The functions F®(x, t, {,v,w, z); r = 1, 2, ... are defined in the set
(7) (x, F)ED,,; C,-, Uj, Wy, ijE(_ oo, + OC)
and satisfy the following condition:

8) FOx,t, ¢ v,w 2)—F?x,t,{,0,w,2)

< Ly Z |z = Zl +(L, |x|+L2)(Z v — 0+
k=1 i=

3

+ z By [y — 8 )+ (Lo X2+ Ls) 3 1G—Cd

i=1
(¢, = [,), where L, ..., Ls and I; (y = 1, 2, ...) are positive constants. We
X
assume that the infinite numerical series ) I is convergent and we denote

y=1
its sum by Ij.

4° The functions @ (x, t, y, 7, {, ,v); v,r = 1, 2, ... are defined and
integrable with respect to (y, 7) in the set

(9) (X, [)EDh; (y) T-')EDh; Ch éh UJE(_x‘a +x)

and satisfy the following inequality
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(10) |¥0(x, t, y, 7. (& 0)— BV (x, ¢, y, 7, {, &, D)
N : N m
< HP(x, 159, 7) Z =Tl + AP (x, 15y, T)[ 2 lfa‘fﬁ"'jzl |vr"7j|],
i=1 i=1 =

with 2 (x, t; y, 1) and A (x, r; y, 1) being positive functions such that

J I APy, f)exp[%lylz]dyd} < M,
0 ﬂf.,',',

(11)

v
ak

.[ ." AP(x, t;y, t)dydt < M
5 A

(r =1,2,..), where K and M are positive constants, and 8 is a constant in
the interval (0, 1).

5° There is a positive constant R, such that for each point (x, f)e D, the
relations

Ze, for [x| < R,

Qe
xS { Zl-\’| for |x| > R*

r=1,2,...,0 € t < h) hold, where Z, denotes the closed ball with centre
0 (the origin of the coordinates system) and radius a.

6° The functions G (x, ¢, {,n); r = 1,2, ... are defined in the set
(12) (x3 t)eah; C‘l"ie(—m! +m)

and fulfil the condition

N
(13) GY(x, 1,0, M—-G(x,,L,m < L, Y =T
i=1

(¢, =2 {,), where L, is a positive constant.

3. We shall prove the following theorem

THeorReM 1. If assumptions 1°-~6° are satisfied, then the (F,)-problem
possesses at most one solution parabolic, regular and of class E, in D,, and of
class C*(D, v a,) (O).

Proof. Assume that the point O belongs to =, and observe that one can
construct a function I*(x, r) defined and having bounded and continuous

(*) For the definition of parabolicity see Szarski [18]-[20]. By the regularity of a solution
we understand that all functions u(x, s) (r = 1, 2,...) are continuous in D,UZ, where X
= ag,U (g, and have in D, continuous derivatives t(x, 1), 4% (x, 1) and 4" (x, 1). A solution is
said to ke of class E; in Dy if [u”(x, 1) € My exp[Kolx|?] for (x,)e D, and r = 1,2, ...,
where My and K, are positive constants, In Lhe sequel we assume that K, < K.
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d t or —(x, 1) i (x, 1) and f?f“(x 1 (i,j=1,2 m) in the set
erivatives o Jror, X, 3 ,j=1,2,...,
R™x (0, h), and satlsfylng the equality

- B I'(x, ) for (x, nell,
0=V for (x, 0@ Zex <0, B,

(14)

where 2, < R™ is a closed ball with centre 0 and radius R, so large that
IT < Xyx 0, h).

Now, let r be an arbitrarily fixed positive integer.

Suppose that there are two solutions, (u!!’, u{?, ...) and (WY"', u®?, ...), of
the (F5)-problem satisfying the conditions of Theorem 1.

We denote u'! = u? —uf! for i = 1,2,..., N, and we set

(15) uf’ = o' H"(x, 1, K)
G(=12;i=1,2,...,N,), where

K[F(x, f)—P]2
H® = vt

(16) (x, t, K) X { l_l”
with

I1+L N,
(17) p=pK,rn= m,

2 L,N,+1

(18) pu=uK,r) =4KLy A*+2L A1+ 5 M)+ T;

1
(19) v =v(K, 1) = gymax {(1+[(L, p+L)(1 + L5 M)KA+

+(BLo+C)K +pLyN,+ 4L, L3 MN, (M, + 1)]*+
+N,(pP*Ly+L)+(Lyp+Ly) LM (M, +1)N,+2KLy A%,
(1+[(L; Ro+Ly)(1+ L5 M)KA+KBLy+KC]* +
+2KLoA*+(LyR3+Ly)N,+(L, Ro+ L) 3 M(M_ +1)N,)}.
Here K and 0 are the constants appearing in (11), and 4, B, C and M,

are positive constants (M, in general depends on r) satisfying the following
conditions:

cf‘ m 2 or
(20) K K
sup exp{g[f‘(v, r)—p]’}+exp[5p’] < M,
on(o.h)

((x, Y e Dy).
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First, we shall confine ourselves to the part D, of D, placed in the zone
0 <1 < hy, where

(21) ho = ho(r) = (1-6)/p.

Let us consider an increasing number sequence {R,} such that
R, > max(Rq, R,) for « = 1,2, ... and R, —» oc when a — co. Denote by
D}~ and o}, the parts of D, and gy, respectlvely, contained in the cylinder
z, x(O ), ‘Where X, is understood sxmllarly as X, and X, above, and 1 is
arbitrarily fixed in (0, ko). Finally, consider a sequence {A>*} whose elements
are defined by

(22) A}* = max sup [v? (x, 1),

1<iSN, D,.u

where v = o) -0},

In order to complete the proof, it is sufficient to show that A7 = 0 for
2 =1,2,... which, as {4**} is non-decreasing and A>* > 0, reduces to
proving that A7 — 0 when a — 0.

Let us note that for each « there are a positive integer i, (1 < i, < N,)
and a point (x,, t,)e D}* such that 47" = [/ (x,, t,)|. In the sequel we
shall limit ourselves to the following two cases:

(a) (x4, t,)eDys and (b) (x,, t*)ea}, ,
where v+ (x,, t,) > 0 (in the cases (x,, ¢ « €(Fr Dy)\ gy, or v (x,, 1,) =0

the required relation lim A%* = 0 is straightforward and if v¥#'(x,, t,) < 0,

one should apply a reasoning analogous to that for vl (x,, t,) > O replac-
ing pli! by P —v“'*)).
In case (a) we shall use the relations

ov'te Avtis)

T(x:p r*) >4 0: Ox. (x*s I*) = 09
(23) m azv(l' )

;;«21 %, 2%, —— (X, A4, <0

(i=1,2,...,mand 1 = (4, ..., 4,) is an arbitrary real vector) resulting
from the assumption v¥(x,,t,) > 0. Substituting (x, t) = (x,, t,) in the
i,-th equation of system (1), using a decomposition analogous to that in [2]
(formula (3.3)) and basing subsequently on the parabolicity of the solutions
", ¥, ..) ( =1, 2), on (23) and on assumptions 3° and 4°, we get
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i)
4 =
ct

(x4, LYH (x, 1, K)

m

< v(i"')(x*’ r*)'{ 0 Z

Jk=1

a2 o
9x, 6%,

(x*s %) K)I

(r)

+(Lylx,l +L;)+(__Z . K)I +

+ZU<

y_

!

f
b QX:)I

Ni,
{f 0 (g s Y1) HO(p, 7, K)- 3 0P, o)+
i=1

N
+ X% (x,, Lyes Vs T)[H(r)(x*’ Ly, K)- Z v® (x,, tl+
i=1

OH® ‘
e s )H}dydr))+

) )
L4|x*| +LS)N H" ( *a K)"T(x*,t*, K)}

+ 0% (x,, 1) Z

Let us observe that by assumption 5° and the definitions of i, and
(x4, t,) the relations

(25) W@y, 1) € 0% (x,, 1,); [V (x,, ) < v¥(x,, t,)

hold for (y,7)eQ¥), 0 <1 < t,;i=1,2,...,N,.
Furthermore, in virtue of (16) and (21) we can assert that for 0 € 7 < ¢,
the sequence of inequalities

K[, 9—p]?
H(”(y, ©. K) < H('}(x*,r*, K)exp [ iy—::t ] —

_K[F(x, t)-p) +v(T_t*)}
1—ut,

K[T(y, r)—p]z}

< HO(x,, t,, K) exp{ I

< H(r)(x*sr*s exp{ [r (v, 7)— P]}

is valid; hence and by (11) and (20) we have

2 — Annales Polonici Mathematici XLI. 2
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[ P (x,, 1y, DH? (p, 1, K)dydr
0

< HO(x,, 1, K)( sup cxp{% [T, T)—Iﬂz}'

Zy%(0.h)

‘I j. '){-(li‘)(xtx t.; y, r)dyd‘f'f‘

0 ﬂg:,),nxo
K ¢ : K
+exp[§P2J | P x4y, T)'“P[‘gl)’lz]dydf)
S SAPN

< M,MH"(x,, t,, K).
Using (24)-26), (11), (20) and (21) and basing on the relation N; < N, we
obtain

oo . -
(27) _Bt—(x"" t,) < muw(x,, t,) {Lo[4K2 A (F—p)*+
*

+2KA?+2KB|F—p]]+(Ly x|+ Ly)[2KA | —p|+
+ 15 M(N, (M, + 1)+ 2KA |F—p)]+(Ly x|+ Ls) N, +
+2KC|F—p|—Ku(F'— p)*—v6?},

where ' = I'(x,, t,).

If |x,| > Ry, then we obtain from (27), on account of relations (14), (18)
and (19), the following inequalities:

()

(28) %(x.., ty) <

(1—ur,)? o (x,, 1) { [“x*]—pl—

—((Lyp+Ly) (1+L5 M)KA+(BLo+C)K+pLy N,)—
— 1L, IEMN.(M, +1)]*—1} < 0.
If |x,] < Ry, a similar calculation yields
gty

(29) ——(x4 1) <

- 0% 0y, ) { —[IF =l = K ((Ly Ro+

(1—pry)
+L,)(1+ 15 M)A+BLy+C)]*-1} < 0.

Both inequalities (28), (29) contradict the firgt of relations (23). Q.E.D.
There still remains to consider case (b) (see p. 104)
Note that in this case the inequality (see [3], p. 294)

d .
(30) HU(I')(X*s t,) <0

holds.
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Furthermore, by Lemma 1 in [6], we have
d

(31) Esjv“-’(x,, t,) = 0.

Lastly, the relation (*)

d 2Kp
—H(x,, t,) = —

H(x,,t,, K)|grad I'(x,, t,)| -cos(f, s} = 0

ds, 1—pt,

holds for j =1, 2,..., 4.

Using the boundary condition (3) with r =i, (x,t) = (x,, t,) and
basing on (13) and (31) we obtain

d .. .
(32) —-—vW(x,, t,)HV (x,, t,)

dl,
< v (x,, t,) HY(x,, t,)[ Igradl"(x,, t, ) cos(f, 1)+L N]
(i,) _
< B ) okprype+ L N HO (x,, 1),
1—put,

whence, and by (17), we get

d
i,

— v (x,, £,) € — v (x,, 1,) < 0,

1—pt,

contrary to inequality (30). _

Thus, the relation u{(x, t) = u@(x, 1), i =1, 2,..., N,, is proved for
the case of h < hy. If h > hy, we use the substitution ¢t = f+jhy (j
= 1, 2, ...) and prove the assertion successively for the parts of D, contained
in the zones jhy < t < (j+1)hg. As r is any positive mteger the proof of
Theorem 1 is completed.

Remark 1. If follows directly from the reasoning in the proof of
Theorem 1 that an analogue of this theorem is valid for the interior (F;)-
problem (i.e. the (F;)-problem for the domain =,), with the uniqueness of the
solution holding in the class C!(Z,ua),).

Remark 2. Suppose that system (1) is of the form

er ‘
(*) We choose the sign of I'(x,t) so that ;T(x, t) = |grad, I'(x, t)|cos (A, x;); i

=1,2,....m .
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n
(33) Y. ag(x, null (x, N—u"(x, 1) = F© [x, 1, u(x, n), ud(x, 1),
2.f=1
t

j’ j ¢(r) (x’ t, y’ T, u(y, T), u(x, [), ug)(x, t))dyd'[']
0 Qx.\‘

and that the derivative du'"/dl, in the boundary condition (3) is replaced by
the transversal derivative )

du® d
5 = 2 dpx, Oul(x, t)cos (A, xg).
dj—(x a,p=1

If
(a) The coefficients a{}(x, t) are bounded and continuous in D,:
(b) The characteristic forms of equations (33) are positive definite and

m
S al(x, ) A Ay = golA|* for (x, 1)eD,, where g, is a positive constant;
af=1
(c) The functions @\ and G (r,y = 1, 2, ...) and the surface g, satisfy
assumptions 1°, 4° and 6°, respectively, and the functions F®(x, r, {, v, w, z)
m
= ¥ a(x, 1) 25— FO(x, t, {, v, w) fulfil assumption 3°;
af=1

(d) Assumption 5° is satisfied,

Then Theorem 1 is valid.

To prove Remark 2 it is sufficient to repeat the proof of Theorem 1
given above with p = (1+L, N, A2KT(g,), just replacing y, by go in (32).

Remark 3. It follows from the foregoing Remarks that if the as-
sumptions of Remark 2 are satisfied and if in the problem considered in [7]
the oblique derivatives in the boundary conditions are replaced by the tan-
gential ones, then this problem possesses at- most one solution.
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