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1. Introduction. A characteristic function a(u) is said to be infinitely
divisible if [a(u)]'/" is also a characteristic function for every positive integer
n, provided that one selects the principal branch for the n-th root. Let F(x)
be an arbitrary distribution function and ¢ (u) its characteristic function. Set

(L.1) y(u) = exp {— 4 [ [@(x)dxdy]
00

with A > 0. Then y(u) is an infinitely divisible characteristic function and its
distribution function has a finite variance ([3], Theorem 12.2.8). The charac-
teristic function y(u) s said to belong to the class #. If F(x) has a unique
mode at x = 0, then y(u) is said to belong to the class ¥. Furthermore, 7 (u)
is said to belong to the class .# if the probability density of F(x) is a convex
function. The purpose of the present paper is to investigate the classes
X, ¥, and 4. The connections of these classes with the classes Land U are
also investigated.

2. The results. A characteristic function y(u) is infinitely divisible if and
only if it has a unique representation of the form

2

. o fux iux
(2.1) y(u) = exp{wu—;uz+m!0I [e -1 —1+x2:|dM(x)},

where M(x) is a non-decreasing function on R\{0] with

E

[ x*dM(x) <o for every ¢ >0

—&
and the constants ¢2 and c satisfy the conditions a2 > 0, ce R. The represen-
tation (2.1) is the Levy canonical representation of y(u), and M (x) is its Levy
spectral function. The Levy canonical representation is a generalization of
the Kolmogorov canonical representation which is valid for the characteristic
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functions of infinitely divisible distributions with finite variance [3]. An
infinitely divisible characteristic function y(u) is said to belong to the class L
if the function M (x) has left and right derivatives M’ (x) everywhere and if the
function xM’(x) is non-increasing on R\{0} (see [3]). If M(x) is convex on
(— o0, 0) and concave on (0, + o0), then y(u) is said to belong to the class U.
The representation

1 u
(2.2) 7(u) = exp {; [log 0(y) dy},
0

where 6 (u) is an infinitely divisible characteristic function, is a necessary and
sufficient condition for y(u) to belong to the class U (see [4]).

A distribution function F(x) is said to be unimodal with mode at x = 0 if
F(x) 1s convex on (—oo0, 0) and concave on (0, +o0). The characteristic
function ¢(u) of a (0) unimodal distribution function is of the form

1
¢(u) = [B(ux)dx,
0

where f(u) is a characteristic function ([3], Theorem 4.5I.1). Below we use the
transformation (1.1) to investigate the connection of the family of (0) unimo-
dal distributions with the family of infinitely divisible distributions.

THEOREM 1. The characteristic function y(u) of the class X belongs to the
class & if and only if y(u) = y'"(ru)y,(u), where 0 <r <1 and y,(u) is a
characteristic function of the class X

Proof. First assume that y(u) belongs to the class .# and let f(x) be the
probability density function of F(x). The (0) unimodality of F(x) implies that
f(x) i1s non-decreasing for x <0 and non-increasing for x > 0. Hence f(x)
—f(x/r) >0 on R\{0} with 0 <r < 1. The function F, defined by

F,(x) = [F(x)—rF (x/r]/(1—r)

is a distribution function, and

@ (u) = [ ) —ro(ru)]/(1—r)

1s its characteristic function. Since

uy
V(W) = y(@)/y'" (ru) = exp { — u [ [ @, (x)dxdy},
00

where p = A/(1—r), it follows that y,(u) belongs to the class ). The converse
can be proved by reversing the argument.

Below we extend a modified form of Theorem 2 of [4] to characterize
the class .#.

THEOREM 2. The characteristic function y(u) of the class X belongs to the
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class M if and only if y(u)=y(ru)y,(u), where 0 <r <1 and v,(u) is a
characteristic function of the class .

Proof. First assume that y(u) belongs to the class .#. The convexity of
f(x) implies that f'(x) is non-decreasing on R\{0}, where f’'(x) denotes the
right derivative of f(x). Hence f'(x)—f"(x/r) > 0 for x < 0 and f'(x)—f"(x/r)
<0 for x > 0. Furthermore, the function F, defined by
F,(x) = [F(x)—r*F(x/r)]/(1—r?
is a (0) unimodal distribution function, and

@, () = [ew)—r? o (ru)]/(1—r?)

i1s its characteristic function. Since

vr () = y(W)/y(ru) = exp {— p [ [ o, (x) dxdy},
00

where u = A/(1—r?), it follows that y,(u) belongs to the class Z.

Conversely, assume that y,(u) = y(u)/y(ru) belongs to the class ¥. The
(0) unimodality of the distribution function F,(x) implies that its density f,(x)
= [f (x)—rf (x/r)]/(1—r?) is non-decreasing for x < 0 and non-increasing for
x > 0. We shall show that f(x) is convex on R\{0}. Following O’Connor we
get

S (x)=f(x2) 2 1f (x1/r)—1f (x5/r)  with 0 <x; <x,.

For r = x,/x, we have

S(x1)—f(x3) = rf(xy)—1f (xz—xl —XZ>

,
or, equivalently,

X1 — X2

1 _r
mf(xx)"'l—_‘_rf(xz— )Zf(xz)-

Hence f(x) is convex for x > 0. In a similar way we can prove that f(x) is
convex for x <0. Hence y(u) belongs to the class ..

For any y(u) belonging to the class ¢ the characteristic function ¥
defined by

1“ uyw
Y (u) = exp{;(f)log }’(Y)dy} = exp{—%j | (j)'(p(x)dxdwdy}
00

belongs to the class U. By Lemma 2 of [1] and the correspondence between
the Kolmogorov and Levy canonical representations, the Levy spectral
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function of y (u) is given by
* Y dF (w)

—Af ]

M@= iIiz dF(w)

-0

Letting y(u) belong to the class ¥ we infer that M, (x) = M(x)—rM(x/r)
is a Levy spectral function which is convex on (—o0, 0) and concave on
(0, + 00). Hence y(u) satisfies the functional equation Y (u) = Y (ru)y, (u),
where ¥, (u) is a member of the class U.

A distribution function F(x) with a well-defined (except possibly at x
= 0) density f(x) is said to be a-unimodal (with mode at x = 0) if f (x)/a |x]*~ 1
is non-decreasing for x <0 and non-increasing for x > 0. In terms of
characteristic functions, F(x) is a-unimodal if and only if its characteristic
function ¢ (u) is of the form

dy, x<0,

dy, x>0.

1
@) =a [B(ux)x*~'dx,
0

where B(u) is a characteristic function [5]. From the fact the Levy spectral
function of y(u) is given by

(y) i P f *dF (y)

M()—lj <0, M(x)= - >0,

it follows that y(u) belongs to the class U if and only if F(x) is a-unimodal
with o« = 3. Equivalently, using the representation (2.2) for the members of
the class U we infer that y(u) belongs to the class U if and only if

u uy
O(u) =exp{—Au [@(y)dy—4 | [o(x)dxdy]
0 00

is an infinitely divisible characteristic function. Similarly, y(u) belongs to the
class Lif and only if F(x) is a-unimodal with o = 2.

Any y(u) member of the class % can be decomposed into two character-
istic functions of the class L. Indeed, the (0) unimodality of F(x) implies that
its characteristic function

o) = [Bux)dx
0

can be written in the form

o) =3¢, (W+30,(),
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where
1 1 .
©(w)=2f@ux)xdx and @,(u) =2 [B(ux)xdx
0 0
are characteristic functions of a-unimodal distributions (x = 2). Letting
uy
%) = exp{—pu [ [o;(x)dxdy} with p=4/2,
00

we obtain y(u) = y,(u)y,(u). In a similar way we can prove that any y(u)
belonging to the class .# can be decomposed into two characteristic func-
tions of the class U.

In Theorem 3, members of the classes ¥ and .# are represented as
limits of sequences of characteristic functions belonging to the class "

THEOREM 3. Let y,(u) and y,(u) be characteristic functions of the classes
¥ and M, respectively. Then

n n/u2
0 7w = lim [] [61 (%)] :

where 6,(u) is a member of the class A

n “Kn-x)/x2
(ii) y2(w) = lim [] [52 (x7u> J( i

n—aox=1

where 0,(u) is a member of the class A
Proof. (i) The characteristic function y, (u) is of the form (1.1) with

1
() = [Blux)dx.
0

Using the f)artition {0, 1/n, 2/n, ..., n/n} of the interval [0, 1] and the fact
that :

5:(w) = exp | — A [ [ B(x)dxdy)
00

belongs to the class ¢, we infer that part (i) of the theorem is valid.

(i) Set 8,(u) = exp {—Au? ¢ (u)}. Then &,(u) belongs to the class ¥ if
and only if ¢(u) belongs to a distribution function F(x) having a convex
density ([3], Theorem 12.2.8, and [6], Theorem 1). Since any characteristic
function y(u) of the class " can be written in the form

1
(23) 7(u) = exp {—u? [ @ (ux)(1—x)dx},
0

from (i) it follows that part (ii) of the theorem is also valid.
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Below we extend the representation (2.3) to introduce an interesting
sequence of subclasses of the class "

THEOREM 4. Let X, (p =2, 3, ...) be the class of all functions defined by
1
V() =exp{—Ai(p+1) foux)(1—x) dx},
0

where @(u) is a characteristic function. Then X .y < X, < X

Proof. For any infinitely divisible characteristic function y(u) the trans-
formation defined by

Y, (u) = exp {% flogy(y)y*~! dy}, q>0,
0

yields an infinitely divisible characteristic function [2]. Applying this trans-
formation to y(u) in (1.1) successively for g=1, 2, ..., p—1, we get the
infinitely divisible characteristic function

2 1"1

2up-
'/’p(“)=e’(p{ uP 1j[p I . lg

0 u

1|up2 Uiy
—epd AT L]
00

Using the Cauchy iterated integral we obtain

yw
[ | o(x)dxdwdu, .. .]uﬁ:%dup_ 2}
00

@(x)dxdwdu, ...du,_,;.

O ey &

Y,(u) = exp{ @ (x)(u— x)”dx}

= exp{—%u2 [ox)( —x)"d-x}.
P o

Since

1u(1-x1/(Pp= 1),

W, (u) = exp{—4 (j) | g @ (w)dwdydx)

0

n ull - Ge/ml/(P= 1))y
= lim [] exp{—— | j¢(w)dwdy}
(1)

n—a x=1 n 0

and the class J is closed under multiplication, passing to the limit and
raising to a positive power we infer that

1
Y (u) =exp{—A(p+1) [oux)(1—x)"dx}
0

belongs to the class . If X denotes the random variable corresponding to
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¢(u) and Y,, denotes a beta random variable independent of X with
parameters g, p > 0, then

(p+1) [@(ux)(1—x)"dx
0

is the characteristic function of the random variable X - Y, ,.,. From the fact
d
Nips1 =Y, Y
it follows that X' ,,, < X, < X.
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