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Abstract. Suppose that the solutions % and v of the first order partial differen-
tial-functional equation

(2, 9) = (2.9, 22, 9), Z(a (@, ¥), B(=, ¥)), 7y (5, ¥)),

where
Z(a(z! v), B(=, y) = (z(al (@, y), B1(=, 3’))’ Ty z(am(% Y)s Bm e, y)))v
are defined in a domain containing the set
D={zy):0<z—2<a,T (@) <y<3§@)}

and satisfy the initial conditions

u(@,y) =@, 9, v,y =vyzy) for (z,yekE,
where @ and y are given initial functions and

B = {(z,¥): @ e [z0—7 2], 70 (%) < ¥ < 8(2)}.
Let

E ={(z,9): %< [m—10 %], 9(%) <y < h(a)},

where 7¢(%) < g(z) < k() < 80(x) for z e [w5—70, 2ol
Suppose that ¢ and y satisfy the conditions

9@, y) =v@,y) for (@,9) ek,
e, y) <yplz,y) for (x,9) eE—B.

In this paper we investigate the mutual situation of the solutions % and v satisfying
the above conditions in E.
Let

Ey = {(z,y): z € [z)—70, m], 7(2) < Y < g(x)},
E; = {(z,y): 3 € [To—70, %], h(z) <y < 8(2)}-
We also give theorems concerning the mutual situation of the solutions # and v in
the case when ¢ and y satisfy the conditions of the form
oz, y) <y, y) for (z,y) ek,
o y) = p(@,y) for (z,9) ek,
o, y) >y, y) for (z,y)eE,.
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The non-linesr differential-functional inequalities of the form
Uz (2, ¥) < F(z, y, % (2, y), % (), uy(z, ¥)),
ve(®,¥) > Flz, ¥, v(z,y),v(), vy (2, v))
are treated in the paper. .

Our theorems are generalizations of some results from [1], [4]-[7], [12].

Suppose that the solutions u(», ¥) and »(z, ¥) of the first order
partial differential equation

2, =fx, X, 2,2y),
where ¥ = (Y1, ...y ¥n)y 2r = (%, .y %,), are generated by characteris-
tics in a domain containing the set 4 = {(z, ¥): 2 € [z, z,+a), lyi—g‘;d

<b—-M@x—x), t =1,...,n}, where a>0,b,> 0, a<< b;/s. Suppose
that these solutions satisfy the initial inequality

u(Toy ¥Y) < v(xy, ¥) for (w, Y)eAd,

0 .
where 4 = {(z, Y): & = o, ly;—y; <b;, ¢ =1,..., n}. In [8], The-
orem 59.2, p. 179 (see also [3], [9]) sufficient conditions are given for the
functions «#(x, ¥) and v(x, ¥) to satisfy the inequality
u(z, Y)< vz, Y)
in 4.
Let B and C denote n-dimensional domains such that ¢ < B c A,
C # B, B # A, and suppose that »(z, ¥) and v(z, Y) satisfy the initial
conditions
Uy X) < (2, ¥) for (w, ¥)e0,
u(wy, ¥) = v(x, ¥) for (xy, Y) e B—0C,
U(Zy Y) < v(xy, ¥) for (zy, Y)e A—B.
Papers [4]-[7] contain theorems concerning the mutual situation of
the solutions u(z, Y) and v(z, Y) in 4 satisfying the above condition sin 4.
Suppose that «(x, Y) and »(z, Y) satisfy the mixed initial inequalities
(@, ¥) < v(2%, ¥Y) for (z,, Y¥)eC,
%(%yy, Y) = v(2, ¥Y) for (zy, Y) e B—0C,
u(gy, ¥) > v(2, ¥Y) for (x4, ¥Y)eA—B.
In [4]-[7] theorems concerning the mixed inequalities in 4 between
solutions satisfying the above conditions in A have becn established.

In this paper we shall consider similar problems for solutions of first
order partial differential-functional equations
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(1) (w,y) = f(:v,y, ’y)’z(al(w,y)yﬁ1(m;?]))’--'

ey Zlan (2, 9), Bu(z, ?/)) y 2y (2, :’/)) .
This paper is a continuation of paper [2], where theorems concerning
mixed inequalities between solutions of an almost linear equation

2.(@, y) +P(z, )2, (%, y) = R(w’ Y, 2(z,9), z(w—r(m)y y))

have been established.
The paper is divided into three parts. The first part deals with ine-
qualities between solutions of an almost linear equation

(2)  z.(2,y)+P(z,9)2(,¥)
=R($:y;z(w’ y)yz(fh(w,y)’ ﬂl.(m’y))! ...,z(am(w,y), Bn(z, y)))-

The non-linear differential-functional inequalities are treated in the see-
ond part. The third part contains theorems on mixed inequalities between
solutions of non-linear equation (1).

1. INEQUALITIES BETWEEN SOLUTIONS OF AN ALMOST LINEAR EQUATION

1.1. Notations, assumptions and lemma. For given functions a;(z, y),
Bix,y), i =1,...,m we define

z(a(@, v), (@, 9) = (2(ax(2, 9), Bi(®@, ¥), ..., 2(an (2, 9), Bulz, W)
Equation (2) can be written briefly

() z(z,y)+ Pz, y)2(®,y) = R(-’”’ Y, 2(2,9), Z(a(z, ), B(=, '!/)))'
Let (see [13])

E ={(2,9): 5a—1 <2< T, H(2) <Y< ()}, 7%>0,
B ={(w13/)' a’o—fo< y < h(o)},
={(z,y): 0<z—2,< @, ¥(x) <y <§(@)},

where 1, 8,, 4, h and 7, § are functions defined in [z, —7,, 2,] and [z,, Z, 4 a),
respectively, and 7,(z) < g(z) < h(z) < 8o(2) for z € [, — 7o, T,), 7 (2) < §(x)
for x € [@,, By +a), and 7,(2) = ¥(2p), $o(%) = §(2y).

We introduce

AssuMpTiON H,. We assume that

1° The function R of the wvariables (z,y,z, U)y U = (Uyy ..., Uy),
i8 continuous and satisfies the ILipschitz condition with respect to z and is
strongly increasing with respect to each of the variables u,, ..., u,, separately
in a domain Q of the space (v,y,z, U).

2° The projection of 2 onito the plane (x,y) contains a domain £,.
The function P of the variables (z,y) is continuous in Q, and satisfies the
Lipschitz condition with respect to y in £2,.
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3° The functions 74,8y, 9, h are conlinuous in [Ty— Ty, Z,), 7,8 are
of class C" in [%y, Ty + @) and
#(2) > Plz,#(2), @) <P,i@) for zcln,n+a).
Assume that EuD < Q.

4° The initial functions ¢ and y of the variables (x, y) are continuous
in E. The solutions u and v of equation (3) satisfy the initial conditions

w(®,y) =o@,9), vy =vy@ vy for (z,y)ek.
These solutions are of class C' in D and (w, y, u(z,y), Ula(z,y), p(=, y))),
()9, v(@,9), V(a(®,9), 8(=,9)) e 2 for (z,y)eD.
AssumpTiON H,. Suppose that
1° The functions a;, f;, @ = 1, ..., m, are continuousin D and a;(z, ¥)
<@, (ai(m; y), Bil(z, ’!l)) e EVD for (z,y)eD, i =1,...,m.

2° min[ inf «qi(w,y)] = 2o—7,. There exisls a constant &> 0 such
i (z.v)eD i
that o;(z,y)<x—6 for (v,y)eD, i =1,...,m.

We define the sequence a,,...,a,, where r,<a,<a,<...<a,
= @y +a, in the following way:
Put

IT = {o*: 2, < 2*< %+ a, 4w, y) < 2 for z € [z, 2%),
(z,y)eD, i =1,...,m}.
Denote by a, the least upper bound of I}. I} is non-void and a, > z,+ 6.

Assuming that the numbers a;, ..., a; have already been defined,
we define g, as follows. Let

Iy = {&*: a, << 2p+a, g, y) < g, for z € [a,, a%), (,¥) e D,
t=1,...,m}.
Denote by @, the least upper bound of Ij,,. I;,, is non-void and

Oy y = G 10
There exists such an index = that a, = z +a.
Let I, =[=, a,), I, = [a)_,, a;) for £ =2,3,...,n and

D,={z,y:zel, {r)<y<i=)}, k=1,..,n.
We adopt the following notation:

K = {(®,y): @ =z, y € (F(xo), §(z)]},
(4) K{ = l(w’y): (7, ¥) EI?HE', (a;(z, Y), Bi(z, y)) EE-'l, ¢ =1,...,m,
£ -k, I=E~nE-R).
fm1

(We do not assume that K ix non-empty, see Thcorem 1.2.)
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Let y = y(«) be a solution of the equation

dy

(5) = P(z,9).
x
We denote by T the following set of integral curves of (5). A curve y = y(o)
is an element of T for » belonging to some interval I < [a,, a,) if y(z)
is a solution of (5), ¥ () = ¥, for some (%, %,) € K, and (=, y(x)) € D, for
zel
For a curve y = y(w) belonging to T for # € I we define

(6) u(@) =u(z,y(@), @) =0z y@)
and

(M) R(z,2) = B(2,y(2),2, ¥(a(s,9(2) ,B(2,y(a))))
where

Y’(a(w, Y), B(z, ?/)) = ('I’(al(w’ Y), Bi(z, ?l)), seny 'P(am(wv Y)s B (@, y)))~
We introduce the following definitions.

DEFINITION 1.1. The curve ¥ = y () belonging to T for # e I is said
to satisfy condition T, in [Z, @) < I if

u(Z) < (%),
w' (2) < Bz, u(x)), o' (x) = R(z,v(z)) * for zc[Z,a).
DEFINITON 1.2. The curve ¥ = y(«) (belonging to T for x € I) is said
to satisfy condition T, in [Z,a) < I if
u(x) = v(%),
w(z) < Bz, u(@)), o(2)=R(z,v() for»elZ,a)
and for each £ > 0 there exists a point z, € (¥, T + ¢) such that
w'(w,) < Rlz,, u(w,)).
Now we prove

LemMma 1.1. Suppose that Assumptions H, and Hy are satisfied. If
a curve y = y(x) belonging to T for x € I satisfies condition T', or condition Ty
in [Z,a) c I, then

(8) u(z) < v(x) for xze(z,a).
If we assume additionaly that (@, y(@)) € D,, then
(9) w(@<o(@).

Proof. If the curve y = y(z) satisfics condition T, in [Z, @), then
inequality (8) follows from Lemma 1 in [2].
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Suppose that y = y(z) satisfies condition T, in [, @). From theorems
on differential inequalities it follows that (z) < v(z) for 2 € [Z, @). Suppose
that there exists a point z* ¢ (%, @) such that

(10) u(z®) = v(z*).
For each & > 0 there exists a point z € (Z, Z+ ¢) such that
(11) u'(2) < R(», u())

and ' (z), R(z,?) are continuous functions. Therefore there exists an
interval (z', "*) < (Z, ") such that inequality (11) is satisfied for e (', z"*).
Since % (z’') < v(2') and

v'(2) = R(z,v(w)) for ze[a,a"],
it follows from Lemma 2 in [2] (see also [1]) #hat u(z) < »(z) for z € (2', 2"’).
The functions » and » satisfy the conditions
u(3) < v(8),
v () < R(w,u(®), o'(x)=R(x,v(x)) for xeld,a).
It follows from Lemma 1 in [2] that % (x) < »(z) for = € (%, @). In partic-
ular, for z = 2* we have u(2*) < v(z*), what contradicts (10).
Inequality (8) is proved.
Suppose that (@, y(@)) € D,. It follows from (8) that u(a) < v(a@).
If u(@) = v(a), then, by the conditions
u' (@) < Bz, u(x), o' (x)=R(z,v@®) forze(Z,al
and by theorems on differential inequalities, we get u(z)>v(z) for

v ¢ (T, @), what contradicts (8). Therefore % (@) < v(a).
Thus the proof of Lemma 1.1 is complete.

1.2, Theorems on inequalities.
THEOREM 1.1. If Assumptions H, and H, are satisfied and the initial
Junctions satisfy the conditions

p(z,y) <ylz,y) for (v,9)eE,

(12) —
(o, ¥) < 9(@0y y)  for (2o, y) € K,

then

(13) u(z, y) < v(z,y)

for (z,y) e D. _
Proof. (i) At first we prove (13) for (z,y) € D,. Let y = y(«) be
a solution of (6) and y (#,) = ¥, where (z,, #) € K. Suppose that (@, y(x)) € Dy
for ¢ e I. I = [#,, a,) or there exists an a e (2, a,) such that I = [, 4]
and (6,y(&)) e Fr(D,). Let u(x), v(z), R(x,z) be the functions defined
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by (6), (7). It follows from (12) and from Assumptions H,, H, that
- % (%) < (o),
w' (1) < B(z, u(x)), o () =R, o)), zel.
By Lemma 1.1 we get
u(z, y(@) = @) <v@) =v(z,y(@) forzel.

To complete the proof of (13) for (z, y) € D,, it is sufficienf to show that
each point P(Z, 7) belonging to D, can be joined by an integral curve
y = y(x) of equation (5) with some point (»,,¥%) € K and (w, y(w)) e Dy
for x e [z, Z].

Suppose that this is not true and that there exists a point (z, §) € D,
and a curve y = y(x), where %(x) satisfies (5) for x € [x,, Z], and such
that 7(x) = 9, §(2') = g(2'), where z, < &' < 7, and
(14) y(x) > (=)
for z belonging to some interval (z’ —¢’, «’), ¢’ > 0. (We proceed similarly
in the case when the curve ¥y = %(z) has a common point with the curve
y =7¥(2).)

As

7'(z) = P(w, g(x), & ()< P(w, E(a’)) for » € (¢’ —¢', o),

and §(z') = y(z’), it follows (see [8], Chapter IIT; [11], Chapter II) that
&(z) > g () for z € (¢’ — ¢’y z'), what contradicts (14).

For x,+a = a, the proof of Theorem 1.1 is completed.

(ii) Assume that a, < x, +a. It is easy to prove that in this case u(z, y)
< v(z, y) for (2, y) e D,. Consider the differential equation (3) in the set
EuD,UD, and take EuUD, as the initial set and

p(z,y) for (z,9) ek,
¢1(z, y) =|u(w,2/) for (x, ?I)el—j”

v(@,y) for (x,y)eR,
iz, ¥) = |@(w, y) for (x,y) € D,

as the initial functions. Then we see that
o2, ¥) < wi(@,y) for (z,9) EEUDI’
@1(a1, Y) < yi(a;,y) fTor ye [;'("'1)’ i(ay)].

Just as in (i) we can show that u(x, ¥) < v(», y) for (=, y) € D,.
In an analogous manner we show that u(w,y)<<wv(v,y) for
(%, y) e D; for + =3, ..., n.

Since D = |J D;, the proof of Theorem 1.1 is finished.

=1
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THEOREM 1.2. If
1° Assumptions H; and H, are satisfied,
2° the initial fumctions fulfil the conditions

p(z,y) = yp(x,y) for (z,9) ek,
p@,y) < y(x,y) for (w,y)eE— E9
3° K is empty,
then
(16) _ w(@,y) < v(@,y)
for (z,y)e D—K.
Proof. (i) At first we prove that (16) is satisfied in D, — K. Let

L, = {{z,9): (=, %) EK’ (g, ¥) < 0(Zo, )},
Ly, = {(z, y): ay)EK’ U(Toy Y) = (T, Y)}.

(a) We prove that u(z, y) < v(x, y) along solutions of equation (5)
issuing from L, and situated in D, — K.

Assume that (x,, ¥,) € L, and that y = y,(x) is the solution of (5)
satisfying the initial condition ¥, (x,) = ¥,. Assume also that (2, ¥,(2)) € D,
for # € I, where I = [, a,) or there exists an & € (%o, @,) such that
1 =(z,a] and (@, y:(a)) eFr(D,). Put u,y(2) = u(x, y,(x)), v.(2) =
= v(x, y,(@)) for x e I. It follows from (15) and from H, that

(15)

%, () < v1(),
uy (@) < By [z, uy(2)), v;(2) = B,(z,v,(2) for wel,

where R,(z,2) = R(m, ¥,(x), 2, Y’(a (@, y1(x)), Bz, yl(w)))). Thus we see
that the curve ¥y = y,(x) satisfies condition T,. Frclm Lemma 1.1 we obtain
u(@, ¥, () = u,(®) < v,(2) = oz, y,(2)) for zel.

(b) We prove that «(w,y) < v(x,y) along solutions of (5) issuing
from L, and situated in D,— K.

Assume that (z,, ¥,) € L, and denote by ¥ = y.(x) the solution of (5)
satisfying the condition y,(z,) = y,. Suppose also that (z, y,(x)) e D,
for z € [x,, ii.) and (5, y.a(ii',')) € Fr(D,). We prove that the curve y = y,(z)
satisfies cogdition T, in [z, g).

Since K is empty, it follows that there exists an index §, 1<j<<m
and an interval [z, z'), 2, < 2’ a, such that

(a,(a;, Y2(x)), Bi(, ya(®) )) eE—E for ze[x,,).
By assumption (15) we get
(17) o(a;(2, 9:(2)), By(2, ¥2(2))) < v(q) (2, w.()), B;(x, ¥a(x)))
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for z € [z,, #'). From Assumptions H,, H, and from (17) we obtain that
the functions u,(z) = u(x, ¥5(®)), v3(w) = v(z, y.(x)) satisfy the condi-
tions

Ug (Ly) < V2(Xy),

’

Uy (@) < Ry (%, ua(@)), 03(x) = Ry(z,v,(2)) for @ € [wy, a]
and

Uy (%) < Ry, uy(®))  for z e [x,, o),

where Ry(a,2) = Rz, y:(2), 2, ¥(a(z, y2(2)), B (2, y2(2))))- )

Thus we see that the curve y = y,(x) satisfies condition T, in [x,, a).
It follows from Lemma 1.1 that u,(z) < v,(x) for z € (x,, i-i') and u,({-i)
< vy(a) if (a, y,(a)) € D,.

(c) Every point (%, ) € D, — K can be joined by means of an integral
curve y = y () of (5) with some point of the segment K and (2, y(»)) € D,
for x € [x,, Z]. (See proof of Theorem 1.1.)

As K = L,UL,, it follows from (a)-(c) that w(x,y)< v(z,y) for

(z,y) e D;— K.

(ii) Assume that (16) holds in the sets D, — K, D,, ..., D,. We shall
show that the same inequality is satisfied also in D, .

If a,< xy;+a, then it is easy to prove that u(z,y) << v(z,y) for
(#,y) € (D,— K)UD,VU ... UD,,_,uD,. Consider equation (3) in EuD,u ...
... UD,,, and take EUD,U ... UD, as the initial set and

Iq’(w’?/) for (z,y) e E,
Pu(®,y) = =
w(z,y) for (x,y)eD,v...uUD,_,UD,,
yv(@,y) for (z,y)ek,

x = D,
'Pk( ’ ‘]/) v(w, ?/) for (:17, y) EDlU b UD"_IUD,”

as the initial functions. Then we have
?u(®, ) < wi(z,y) for (z,y)e BuD,v... UD,_,uD,,
Pr(ar, ¥) < "Pk(a'm y) for y e [F(ay), §(ay)].
Thus we infer from Theorem 1.1 that u(x, y) < v(x, y) for (z,y) € D,,,.
AsD—FK = Dl—Kqu D,, the proof of Theorem 1.2 is finished.

We now consider the mutual situation of the solutions u(z, y) and
v(x, y) of (3) in D in the case when the initial functions satisfy (15) and K
is non-empty.

Assume that y = () is a solution of (5) and %(x,) = ¥, where (x,, %)
€ K. Then (a;(zy, %), B;(@y, 7)) € B for ¢ =1, ..., m. Let I' be the largest
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interval contained in [z,, a;) such that
(18) (a,-(:v, y(x)), Bilx, 37(9:))) eE forzel,i=1,...,m.

(I’ = [2o, @,) Or there exists an a’ < a, such that I' =[x, a']. If I’
= [@,4, a’], then condition (18) holds in [x,, a’] and for every & > 0 there
exists an z, € (@', &’ +¢) and an index j, 1 < j < m, such that (a, (@ 4 (),
Bi(w., (@) e E—B.)

We shall denote by C the curve y = y(v) for x e I'. Let 4, denote
the plane set formed by all curves C issuing from K.

Now we have

THEOREM 1.3. If

1° Assumptions H, and H, are satisfied,

2° the initial functions satisfy (15),

3° K is non-empty,

then
(19) u(z,y) =vx,y) for (z,y) e 4,,
(20) u(@,y)<v(@,y) for (z,y)eD,—4,—L.

Proof. (I) We start with proving (19). Let y = 7(z) be a solution
of (6) and ¥(#,) = ¥, where (z,, ¥) € K. Suppose that the curve y = ¥ ()
is situated in 4, for z e I', I' < [z, a,). (I' is the interval of the form I’
= [#y, a’], where a' < a, and (a’,y(a’)) € Fr(4,) or I' = [z, a,).) Thus
we obtain

"(21) (a:(z, §(2), Bi(=, §(2))) e B for @el,i=1,...,m.

It is easy to verify that the functions u(x) = u(xz, §(2)), v(z) = v(z, §(=)),
z € I', satisfy respectively the differential equations

2 —
E}':Rﬂm;z)’ E&,‘:Ra(w’z);

where R, (2,2) = -R(ms y(2), 2, ¢(a ("’", g(w))’ ﬂ(w’ 37(“"))))1 Ry(@, 2) =
- R(w,g’](m), 2 ¥(a(e, §(@)), (e, §(2)))). Tt follows from (21) that
B,(x,2) = Ry(w,2) for z € I'. Since u(z,) = v(z,), it follows from con-
dition 1° of Assumption H, that «(x) = v(z) for € I'. The solutions
u(w,y) and v(z, y) of (3) are therefore equal along any arbitrary curve J
issuing from E. The proof of statement (19) is completed.

(II) We now prove (20).

(a) Assume that y = y(w) is a solution of (5), (wy, y(2,)) € K and
that (z, y(»)) € 4, for & € [x,, a’] and (z, y(«)) € D,— 4, for x e (a’,a”),
where (e, y(a’’)) € Fr(D,). We shall prove that u(z,y) < v(z,y) along,
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the curve y = y(x) for « € (a’, a”’) and that u(a”, y(a")) < v(a”, y(a"))
if (", y(a"")) € D,.

Since (¢, y(z)) € D,— 4, for z € (a’,a”), it follows that in an arbi-
trary right-hand: neighbourhood of the point a’ there exists a number x
such that (a,,(w, ¥ (), B (o, y(m))) € E—F for some k, where 1<k < m.
It follows from (15) and from H, that the functions u(z) = u(x, y(x))
and v(z) = v(z, y(x)) satisfy the conditions -

u(a’) = v(a’),

do(x)
dz

du(x)
dz

<R'(;z;,u(m)), =R'(w,v(w)), zela’,a")

and for every ¢ > 0 there exists an z, € (a’, @’ + &) such that

du(z,)
dx

< E(a,, u(a,)),

where E(z,z) is defined by (7). Thus we see that the curve y = y(x)
satisfies condition T,. It follows from Lemma 1.1 that u(m,y(w))
<v(®,y(x) for xze(a’,a’”) and that wu(a”,y(a"”))<v(a”,y(a")) if
(a'"r y(a")) € D,.

We shall now prove that inequality (20) holds along solutions of (5)
issuing from K —K. Let

1-;1 ={(z,9): (x,9) e E—‘Ey u(Zoy ¥) < v(29, ¥)},
Ly ={@,9): (#,9) e K~E&, u(a,y) = v(20, 9)}-

(b) We shall show that u(x, y) < v(x, y) along the curve y = y(®),
where y,(2) is a solution of (5) and (wy, ¥,(%)) € L,.

Suppose that (#,y,(2)) € D, — 4, for z € [x,, ¢’) and (a’, y,(a’)) € Fr(D,).
The functions u,(x) = u(z, y,(x)), v4(x) =v(z,y,()) satisfy the con-
ditions

%y (o) < 01(%o),
U (2) < Ry (2, y(#)), v (x) = Ry(z, 0,(2)), @€ [a,a’),

where B, (z,2) = R (a;, ¥, (2), 2, 'P(a (€, y1(2)), B (=, yl(w)))). It follows from
Lemma 1.1 that u(z, ¥.(#) < v(z, y,(®)) for = e[z, a’) and also that
'"'(a"y ?/1("")) < 'v(a,', '!/1(”")) if (“', ?/1(0")) € D,.

(¢) Suppose that ¥ = y,(#) is a solution of (5) and (,, Ya(o)) € L,.
Assume that (z, y5(#)) € D, — 4, for & € [z,, a’’) and (a”, ys(a”’)) € Fr(Dy).
Since (%, Y2(2)) € L,, there exists an interval [m,, #'), @, < &’ < a’’ such
that for each z € [,, ') there exists an index % such that

9(al(@, ¥2(a), Bil@, ¥:(@)) < v(alz, v2(2)), Bilz, ya(a))).
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The functions uy(x) = u(x, ¥o(2)), v5(x) = v(z, y4(»)} satisfy the condi-
tions

Uy (%) = V4(%0),

u,(#) < R, (m, uz(w))a v () = R, (my va(‘”)); z € [#,, a"’)
and

Uy (7) < By (@, ug(®)) for z e (x,, #'),

where R,(z,2) = R(m, Ys(2), 2, Y’(a (#, ya(2)), Bz, yg(w)))). Thus we see
that the curve y = y,(x) satisfies condition T, in [x,, a’’). It follows from
Lemma 1.1 that u(x, 4,(2)) < v(z, ¥,(#)) for @ € (x,, a”’) and u(a”, y,(a’))
<o(a” ?/2(“”)) it (a”, ?lz(a”))_epl-

(d) Each point P(%Z, %), % > 2,, belonging to D, — 4, can be connected
by an integral curve y = y() of equation (5) with some point (z,, ¥ (%)) € K
and (z, y(x)) € D, for « € [y, Z]. The proof of this property of the set D,
is given in the proof of Theorem 1.1.

It follows from (a)—(d) that u(z, y) < v(x, ) for (x,y) e D,— A, — L.

The proof of Theorem 1.3 is completed.

Remark 1.1. If the assumptions of Theorem 1.3 are satisfied and
a, < a -+, then it is easy to prove that u(z,y) = v(x, y) for (z,y )€ 4,
and u(z,y)<v(z,y) for (x,y)eD,—a,—L.

Theorem 1.3 concerns the mixed inequalities between solutions of
equation (3) in that part of D, where » € [z,, a,). In the sequel we con-
sider the mutual situation of solutions of (3) in the entire D.

We adopt the following

_AssumerioN H,. Suppose that there exists a finite sequence of intervals
Ioy Iy, ...y I, where Iy = [@— 7y, @), I, = [0, @], @y = ay, I}, = [z, @]
for £ =2,3,...,n—1, I, = [a,_,,x,+ a), satisfying the following condi-
tion: for each ke {l,...,n} there exists an 1 €{0,1,2, ..., k—1} such that
if (@,y)eD, zel,, then a;(x,y) el, for i =1,..., m.

Suppose that Assumptions H, — H; hold, K is non-empty and that
the initial functions satisfy (15). Put

Dy ={(z9): ael,f@)<y<i@}, k=1,..,n.

We shall define a sequence of sets AD, ..., A” in the following way:

Consider the differential equation (3) in EuD,. It follows from
Theorem 1.3 (see also Remark 1.1) that there exists a set 4 such that
w(z, y) = o(z, y) for (z,y) € AVand u(x, y) < v(z, y) for (v, y) e D, — A" -
— L. The set A" has the form

A'-(l) — {(;p’y); Ty < XX 0y, g;($)<y<h1(w)}’

where ¢, < @, and ¢,, k, are continuous functions.
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Now suppose that the sets 4®, ..., A% have already been construct-
ed. We define A®* ag follows Consider equation (3) in the set EuD,u ...
. uD,,, and take EUD,u ... UD, as the initial set and

pl@,y) for (z,y)ekE,

Pe(Z,y) = - -
u(z,y) for (x,y)eD,u... VD,
v(z,y) for (z,y)ekE,

Ve(®,9) = ~ ~
v(z,y) for (z,y)eDyv... UD,,

a8 the initial functions. It follows from Assumptions H,, H; that there
existsanle{0,1,...,k} such that if (z, y) € D,,,, then (a;(z, ¥), Bi(z, ¥))
eD,fori =1,...,m. The set 4A? = D, has the form

A0 = {(@,9): v e Iy (@) <y < (@)},
where f, < I, and g, b, are continuous functions. For I = 0 we define
i = B,

(1) I @p(dr, ¥) < v4(d, y) for ye[F(a),#(a,)], then we obtain
by Theorem 1.1 that (z, y) < v(z, y) for (x, y) € D,,. In this case 4*+?
is empty.

(ii) Let

K(k) = l(.’?ﬂ, Y): @ = dk; Y€ (;(&’k)v 5(&%)”’

EP = |(z,9): (®,9) e KPP, (a2, y), Bi(z, y)) € 4},

-~ m -~ -~ - h— a
KE® — p Kt L® — AP N(E® K®),
-1

If £® is empty, then we obtain easily from Theorem 1.2 that u(x,y)
< v(z, y) for (, y) € D,—K®. In this case 4**V is empty.
(iii) If K®is non-empty, then Theorem 1.3 implies (see also Remark 1.1)

the existence of the set A**? formed by integral curves of equation (5)
such that

u(z,y) =v(x,y) for (w,y)e /_T("“);

u(z,y)<v(z,y) for (z,y)e Dy, —A*_L®,
A%+D has the form

A-(k+l) = {(w, y): wEfk-{-l’gk+1(m)<y<hk+1(m)}’
where fk+1 < Ip.iy ey and hy,, are continuous functions.

$ — Annales Polonici Mathematicl XXXVI.2
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We have therefore the following

TeroREM 1.4. If

1° Assumptions H,—H, are satisfied,

2° K is non-empty,

3° the initial functions satisfy (15),
then

u(@,y) =o(@,y) for (w,y)eD,
w(w,y)<v(x,y) for (z,y)e D—-D—L,

where D = U 4O,

f=1

'
2. DIFFERENTIAL-FUNCTIONAL INEQUALITIES

Denote by @ the class of continuous functions defined in EuD.
Elements of @ will be denoted by 2(*), (), »(+) and the like. Let

H, = {(s,t): (s, e BUD, s < z}.

We introduce

AssumpTION H,. Suppose that

1° F is a real function defined in the set @ x P x Q, where Q is a domain
contained in the three-dimensional Euclidean space. The projection of &
onto the plane (z, y) contains the set EUD. L satisfies the following condition:
if (,9,2) € @ and Z > z, then (, y, z) € 0. Q is an interval of real numbers.

2° F is continuous in @ xP xQ and satisfies the following Volterra
condition: if (#,9,2)€L, q€Q, 2/(), 2(')€ ¢: 21(8,1) = 2,5(8,1) for
(8,t) e Hy, then F(w,y, 2, 2,(°),q) =F(v,y,2,2:("),q). F is non-de-
creasing with respect to the fourth variable.

3° The functions r, and 8, are continuous in [y, —1,, &,], the functions ¥
and § are of class C" in [z,, 2,4+ a) and

F(mi Yy2,u(*), QI)_F(m’ Yy2,%("), %) = "‘;I(w)(QI"%)!
F(‘v'; Y,2,u(), QI)—F(wr@/’z’ u(-), Q2) < —§'(2) (1 —q.)
Jor (z,9,2) EQ’ u(-) eq.j’ 9,9: €9, ¢ = ¢a.

4° The functions w and v are continuous in EUD, have first order de-
rivatives in D and, moreover, they have Stolz differentials in Fr(D)—K.

5° If (=, y) e D, then (wr Y, u(z, ?/))’ (53’ ¥y, v, f’/)) e and Uy (%, Y),
‘0,,(:1»', y) € Q'
Remark 2.1, If F satisfies the Lipschitz condition

[-F(a"y Yy 2, 17(')’91)—-5,(“’7 Y,%,u("), Q2)|< M |g, — g.l

(22)
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for (m,y,z, &(-))eﬁxcﬁ, G1,9,€Q and
() = Yo—b+M(x—2x,), (@) = Yo+ 0—M (2 —ux,), @ € [Ty, 7,1 a),

where b > 0, y,—b = 74(%,), Yo+ b = 84(%,), a < b/ M, then condition (22)
is satisfied.

We have

THEOREM 2.1. Suppose that

1° Assumption H, is satisfied,

2° the functions u and v fulfil the initial inequalities
u(z,y) <v(w,y) Jor (z,y) e E,
u(To, y) < (2o, y)  for (a’oyy)ez

and the differential inequalities

(24) “z(w’y)<F(m7y7u(m7 y);“(')yuy(a"yy))’ (z,y)eD,

(25) 'v,(w,y)>17'(a:,y,v(w,y),v(-),v,,(w,y)), (®,y) e D.

Under these assumptions,
(26) u(w, y) < v(x, y)
Jor (z,y) eD. “

Proof. (The proof of this theorem is patterned on that given in [8].
If assertion (26) is false, then the set

Z = {x: x € [4,, Zy+a), u(z,y) > v(zr,y) for some y € [F(z), §(x)]}
is non-empty. Defining &* = inf Z, it is clear from (23) that 2* > z, and
(27) u(@®, y*) = o(a", y*)

for some y* € [F(2"), §(=*)].
If (2% y*) e Int(D), then u,(z*, y*) = v, (2% ¥*) and

(23)

(28) u (@, y*) — v (", y*) > 0.

Since u (s, t) < v(s, t) for (s, ?) € ﬁz, it follows from condition 2° of Assump-
tion H, and from (24), (25), (27) that

U (2*) y°) — v (%, y*)
< Fla*, y*, u(a®, 4*), w(-), u, (&%, 4°)) = F(a*, y*, v(a*, ¥*), 0(-), v, (z*, ")
S F(® o w(@®, y%), 0(), (2, ") = F (%, y*, u(a®, 9*),
(), 'vy(w*7 y.)) <0,
which contradicts (28).

Suppose that (z*, ¥*) € Fr(D) and assume that for example y* = #(z*).
Then u, (¢*, ¥*) < v,(2*, y*) and the function #(z) = u(z, ¥(x)) —o(z, #()),
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x € [%,, 2" ] attains maximum at # = &*. Therefore
(29) g (2", ¥*) — 0, (2%, y*) +7(2") [, (2", 4") — v, (4, ™)1 > 0.
Since u(s,t) < o(s,t) for (8,1) € H,., then we obtain by the monotonicity
condition and by (22), (24), (25), (27)

4 (3*, 4*) —v (2%, y°) |
< Fla*, y*, u(@®, 4°), w(), u,(a* 4")) —F(z", 9", v(a*, %), 0(-), v, ("))
< [F(w" y*, w(@®, y*),u(-), uy(w*; y*)) "'F(a’*s ¥ u (@ y"), (), uy(m.’ y.))] +
+[F(w" ?/" u(w.) y*)’ v () ’“y(w" ?/*)) —F(w*) ¥y (w.; y.)’ 0(*), Uy, (w*’ ?/*))]
< —"'(w.) [y (=" y*) —y (:D‘, ¥,
which contradicts (29).

Hence Z is empty, and the statement (26) follows.

Remark 2.2. If 7, = 0 and ¥ does not contain the functional argu-
ment, then from Theorem 2.1 we obtain the well-known theorem on
strong first order partial differential inequalities (see [3], [8]). Theorem 2.1
is a generalization of some results on first order partial differential inequal-
ities with lagging argument which are given in [12].

Remark 2.3. In Theorem 2.1 we can assume that in (24) the weak
inequality holds and that in (25) the strong inequality is satisfied. In
Theorem 2.1 we can assume instead of (24), (25) that

U (2, Y) < F(“"’ Y, u(z,y), u(-), u,(z, 'y))y (z,y)e D,
(%, y) = F(w: Y, 0(2,9),0(), vy(z, y))’ (z,y) e D,

where for each (x,y) € D at least one of the above inequalities must be
strong.
THEOREM 2.2. Suppose that

1° Assumption H, i3 satisfied,
2° there exists a constant N > 0 such that
(30) ]F(a:, Yy 21, u(*), q)—F(m, Y, 2, u(), Q)I < N (21— 2,
for (m’y:zi’ ﬂ(), Q) equ'S XQ? i = 1’27
3° the <initial inequalities
u(z,y)<v(z,y) for (v,y)cE,
U@, Y) < v(%,y) Jor (%,y)eK
hold and the differential inequalities
uz(Z, ¥) < F(wa Yy u(@, ), u(+), uy(z, 3/))! (z, y) e D,
v, (%, y) = F(my Y, v(z,9),v("), v (=, y)), (zyy)eD
are satisfied.

(31)

(32)
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Under these assumptions we have

(33) u(z,y) < vz, y)
for (z,y) eD.

Proof. Let ¢ = min [v(z,y)—u(z,y)]. It follows from (31)
(@, y)eK '
that & > 0. Let ¢ € (0, &). There exists a constant é > 0 such that

(34) (e+8/N)e M%) _3/N > 0

for z € [#y, #,+ ). Denote by 2 a continuous function defined in E such
that

(35) u(w,y) < 2(z,y)<v(z,y) for (z,y)ek
and
(36) Z(wo, y) = ulwo, y)+e, Y €[F(@),&(®)].
Let
iz, 9) for (»,y) e K,

BT @0 = (o, ) + (o8 Me ™0 _ 3N for (@,9) € D.

We shall prove that % (z, y) < v(z, y) for (z,y) € D.

The function # is continuous in FuUD, has first derivatives in D
and possesses a Stolz differential in Fr(D)—K. Moreover, #(z,¥)
<o(z,y) for (z,y) € E and @(%y, y¥) < v(2y, y) for (z,,y) € K. It follows
from (30), (32), (34), (35), (37) and by the monotonicity of F with respect
to the functional argument that

(2, 9) = 4,(2, y) — N (e + /) e~Ne=0
< F((B, Y, 12(3’:', y); 'ﬁ'( ')7 'ﬁ’y(wy ?/)) —l-[F((L‘, Y, u(my y); u('); u,,(w, y)) -

—F(my Y, (@, y), u(*), '“'y(“” ?/))] +[F(w7 Y, (@, 9y), u( ')fuy(m’ y)) —
_'-F(w’ Y, ’i'b(él", Y)y % ( ‘), uu(w’ y))] —N(e+ a/N)e-N(z—zo)
< F(z,y,i(2,y), ("), y(®,y)+ N lu@,y)—i(o,y)) - N(c+ 8/N)e~ Ve
= F(‘Dy Y, u(x,y), (), 'ﬁ”(w, y))—a-
Since ¢ > 0, we have

(38) "-‘z(a"’y)<Fi(wr Y, u(z, y);a('):'&y(wyy))’ (z,9)eD.

It follows from (32), (35), (37), (38) and from Theorem 2.1 that #%(z, ¥)
< v(z, y) for (z,y) € D. From this inequality and from (34), (37) we ob-
tain assertion (33). This completes the proof of Theorem 2.2.

THEOREM 2.3. Suppose that
1° Assumption H, is satisfied,
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2° there exists N > 0 such that

(39) IF(wfyyzly uy(*), 9)_’F(wyy’zzr ug(), Q)I
S N[l —2ol+ sup |u,(s, t) —ua(s,?)[]

(a,t)eﬁz
Jor (""'7 Yy 2y %), Q) e Qxd XQ,i=1,2,
3° the initial inequality
(40) w(z, y) <o(r,y), (®,y) e B
and the differential inequalities

U (2, Y) <F(m; Y, u(Z,y), u(-), u,lz, ?/))7 (z,y)e D,

(41)
'va:(myy)>F(myy’”($7y)7”(')a”y(w7y))y (z,y) e D
hold.
Under these assumptions we have
(42) u(@,y)<v(®,y) for (w,y)eD.

Proof. Let

43)  #(z,9) = v(z,y) + % [(1+ N)eNe—=otm _ 4],

) e>0,(z,y)e EUD.
We shall prove that
(44) u(z,y) < é(x,y) for (z,y)eD.
Since
9,(%, ¥) = v,(2, ¥} +2¢(1 + N)e V%0t
> F(z,9,9(@,9),0(°), 0,(2, y)) +26(1 + N) N E20*)
=F(2,9,5(2,9),5("), 9(2, y)) +2e(1 + N)NeE20+70) +
+[F (@, y,0(@,9),v(),v,(, 9)) — F(x, 9, 6z, y),5(),9,(,9)]
>F(w,9,6(x,9),5(), 8,(2,y)— N[0z, y) —5(z, 9|+
+ sup |v(s,t)—6(s, t)] +2e(1+N)eN @20+

(8.8)eH,

=F(z,y,4(2,9), (), 9,(z, y)) —N[%((l + N)eNE-20+70) 3}
+ _;T_ ((1 +.N) ezN(z—zo+to) — %)] —]—28(1 —I-N) GzN(z—zo+ro)

= F(“", ¥, 9(z,y),9(), o, (x, ?/))‘l's’
we get the strong differential inequality
(45) az(m’y)>F(wyy7 v(z, y)as()16y(m’y))
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From (41), (43), (45) and from the initial inequality
u(z,y) < 9(x, ), (®,y) e B,
we obtain, in virtue of Theorem 2.1, that

4@, ) < 0(z, )+ = [(1+ M) e™e=+0 _§],  (a,) € D.

From the above inequality we obtain in the limit (letting ¢ tend to 0)
inequality (42). Theorem 2.3 is proved.

Remark 2.4. Suppose that Assumption H, is satisfied and that »
and v are solutions of the equation
2 (2, Y) = F(mf Yy, 2(z,9),2(), 2, (2, y))v (z,y)eD.
Then

() if w(x,y)<wv(x,y) for (z,y) e E and the Lipschitz condition
(30) is satisfied, then u(z, ¥) < v(x, ¥) on D (see Theorem 2.2),
(b) if u(z, ) <v(z,y) for (z, y) € E and the Lipschitz condition (39)
is satisfied, then %(z, ¥) < v(z, y) on D (see Theorem 2.3),
(e) if u(z,y)<v(z,y) for (z,y) € E, condition (30) holds and con-
dition (89) is not satisfied, then it can be v(z, ¥) < u(z, y) for (v, y) e D—K.
For example, the functions
0 for (#,y)e[—1,0]%X(—o0, +00),
z*  for (z,y) €(0,1) X (—o00, +00),
v(z,y) =0 for (#,y)x[—1,1) X (—o00, +00),

u(@,y) =

satisfy the equation
2 (%, y) = [z( -z, Bi(z, (9))]1l2+4[z(’}w’ Ba(w, ?!))]”2
and u(z, y) < v(x, y) for (#,) € [—1, 01X (— oo, +o0); however, u(z, y)
> v(@,y) for (#,y) €(0,1) X (—o00, +o0).
THEOREM 2.4. Suppose that
1° Assumption H, and the Lipschitz condition (39) are satisfied,

2° w(@,y)<v(@,y) for (z,9)eE
and
(46) Uy (2, ¥) < F(wa Y, u(z,y), w(:), '“‘y(a” '!/))’ (z,y)eD,
(47) V(2y Y) 2_1’1(37) Y, v(z, ), v(*), vy(z, y))’ (#,y) € D.

Under these assumptions we have
(48) u(z, y) < v(z, y)
for (x,y)e D—K.
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Proof. It follows from Theorem 2.3 that u(z, y) < v(x, ) for (z, )
e D—K. Let

Z = {(®,9): (#,9) e D—K, u(v,9) = v(x,y)}.
If (Z, 7) e ZnInt(D), then u,(Z,§) = v,(Z, §) and
(49) U (T, §) —v(%, ) = 0
Since u(s,t) <wv(s,t) for (s,t) e H;, it follows from the monotonicity
condition and from (46), (47) that «, (x, ) —v.(%, ¥) < 0, which is incom-

patible with (49). Assume that (Z, 7) € ZNFr(D) and suppose that § = 7 ().
Then (see the proof of Theorem 2.1)

(60) Uy (%, §) —0,(Z, §) +7 (%) [4, (Z, 9) —v,(F, 7)1 > 0
and
(61) %y (%, ¥) < v, (%, 9).

It follows from (22), (46), (47), (51) and from the monotonicity condi-
tion that

U (Z, §) —~ (T, H) < —7'(7) (v, (%, ¥) —v,(Z, ¥)],
which contradicts (50). Hence Z is empty, and the statement (48) follows. -

Remark 2.6. In Theorem 2.4 we can assume that in (46) the weak
inequality holds and that in (47) the strong inequality is satisfied. We can
also assume that instead of (46), (47) the differential inequalities of the
form (41) are satisfied, where for each (z,y) € D —K at least one of ine-
qualities (41) must be strong.

3. MIXED INEQUALITIES BETWEEN SOLUTIONS
OF A NON-LINEAR EQUATION

In this part of the paper we investigate the mutual situation of two
solutions of the mon-linear equation

(62) 2(@,9) = fle, 9, 2(2,9), Z(a(x,9), B(2,9)), %(z, ),
whereZ(a(w, ), B(z, y)) = (z(al(wy Y), Bz, y)), ceey z(am(myfy)i Bm(z, ?/)))-

3.1. Assumptions and lemma. We introduce

AssumpriON H,. Suppose that

1° The function f the variables (x,y,2, U, q), U = (uy, ..., u,) and
8 first partwl derivatives with respect to v, By Uy eny Upyy  GTE CONEINUOUS
Jor (z,y,2) € 2, ¢ €Q and for arbitrary U. Qisa domam such that (x, y, Z)

€@ if 2>z and (v,y,2) € Q. The projection of £ onto the plane (x,y)
containg EUD. Q is an interval real numbers.

2° f is strongly increasing with respect to each of the variables u,, ..., Uy,
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separately. The derivatives f,, f,, fu, (i =1, ..., m), f, satisfy the Lipschitz
condition with respect to (y,z, U, q).

3° The function r, and 8, are continuous in [%,— vy, o], Where o, > 0, ¥
and § are of class C' in [zy, ¥y+ a) and
¥ (x) > —fq (‘”; ;‘_(:L‘), 2, U, Q)y
§'(x) < _fq(a’7 §(x),2, U, Q)
Jor x € [zy, By +a), (=, 7(), 2), (z,§(2),2) € 2, g €@, U arbitrary.
4° The initial functions ¢ and y of the variables (z,y) and their first

partial derivatives @, vy, are continuous in E. ¢, and vy, satisfy the Lipschilz
condition with respect to y in E.

b° u and v are solutions of (52) satisfying the initial conditions

(83)

(54) w(z,y) =o@,9), o9 =vyv9), (z,y) e E.

u and v are of class C' in D, w, and v, satigfy the Lipschitz condition with
respect to y in D. If (x,y)eD, then (z,y, u(z,y), (=,v,v(z, ) e,
“u(my Y), v, (2, 9) € Q. ~

6° g and h are continuous functions in [Xo— 7o, X,] and 7ry(z) < g(x)
< h(2) < 8(%) for x € [m,— T, Tp],

B ={(x,y): @ c[5,—1, 2], §(2) <y < h(2)}.
AssuMpTION H,. Suppose that
1° The functions a;, B;, © =1,...,m, satisfy Assumption H,.
2° There exist continuous derivatives 0a;[/0y, 0f;/0y and they satisfy
the Lipschitz condition with respect to y in D.
Let us consider equation (52) in EuU D, and suppose that Assumptions
H,, H; are satisfied and that the initial functions fulfil the inequality

o(z,y) < p(=, y) for (z, y) € E. Then we have by Theorem 2.3 that u(x, y)

< o(x,y) in D,. The functions % and v satisfy in D, following first order
partial differential equations

(55) 7. =1 (@, 9,2,2,)
and )
(56) 2 =f(2,9,2,2,),

respectively, where
f(w: Y, 2, q) =f($’ Y, 2, ®(a(z,y), Bz, ?/))7 Q)y
?(wy Y,2,9) =f("’"’ Y, 2, ?’(a(m, Y), B(=, y))r Q)'

It follows from Assumptions Hy and H. that % and v are generated in D,

(87)



184 Z. Kamont

by characteristics of equations (55) and (56), respectively (see [10]).
Let (%, 7), Z > x,, be an arbitrary point of D,. Denote by y = ¥(z) a
solution of the equation
dy
7
satisfying the initial condition ¥(Z) = y. It follows from (53), (57), (68)
and from theorems on differential inequalities that the function ¥y = ¥ ()
is defined for € [%,, Z] and (=, %(2)) € D, for = € [, Z].

We introduce the following definitions:

DEFINITION 3.1. A point (Z, y) € D, is said to satisfy condition W, if
there exists a & € [x,, T) such that « (&, §(@)) < v (3, F()).

DEFINITION 3.2. A point (%, y) € D, is said to satisfy condition W,
if there exists a & € [z,, Z) and an index j, 1 < j < m, such that

‘P‘(aj (57 ?(57)), ﬂj(‘;” g(‘i)j) < 9’(“5(57 y(‘i))y ﬁj(‘i’ ?7(5)))
Now we prove

LeMMA 3.1. Suppose that Assumptions Hg, H, are satisfied and that
gz, y) <vy(®,y) for (@,9)eB. If a pont (%,Y)eDy, T> %, satisfies
condition W, or condition W,, then

(59) u(Z, §) < v(z, 7).
Proof. I. At first we prove (59) in the case when (7, %) € IntD,.

(a) Suppose that (z, ¥) satisfies W,, i.e., there exists a & € [x,, Z)
such that « (&, §(&)) < v (@, F(#)), and y = () is a solution of (58). such
that #(Z) = 7. Let 6 > 0 be such a small constant that (Z+ 3, #(Z+ 9))
€ Int(D,). There exists an ¢, > 0 such that any solution ¥ = y(z) of (58)
issuing from the segment

{(,9): @ =‘i’ y € [§(Z) — ey, §(@) + 6,1}

is defined for z e [#,Z-+6) and (,y(x)) e D, for « e[&,E+ 8). There
exists an &, > 0 such that #(z, y) < v(v, y) in the segment

{(""77 y): z = ‘E’ ye [g(i)—azy ?7(5’)+32]}°

Let y = y,(x) and y = y,(x) be solutions of (58) satisfying the initial
conditions ¥,(%) = 7 (&) —e, Yo(&) = (&) + ¢, where ¢ = min(e,, &,). Let

Tz, e) ={(®,¥y): @<z <ZT+6,y.(®) <Y< Y(2)}.
Since w(#, ¥) < v(&, y) for y € [y,(&), ¥,(&)] and

(58) —foms y, wizy ¥), uy(, )

Uy (T, Y) =f(w7 Y, u(x, y), u,(z, ?/))’
(2, Y) >f(w’ Y, v(z,Y), v,(x, y))
for (x, y) € T, (@, €) it follows from Theorem 2.2 (see also [1]) that u(x, y)

(60)
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< v(x,y) for (z,y) e T,(#, ¢). In particular, for (Z, 7) € T,(%, &) we have
u(Z, §) < v(Z, 7).

(b) Suppose that (z, 7) satisfies W,, i.e., there exists a & € [z, Z)
and an index §j, 1<j<m, such that ¢p(a,.(a'5, 7(®)), By(#, ;17(5:)))
< w(aj(:i, 7(@)), B;(&, 37(57))). Let 6> 0 be such a constant that (Z+ 9,
g(z+ 6)) € Int (D,). It follows from the continuity of the functions a, 8;,
@, v that there exists a neighbourhood U(#) of the point (&, 7(#)) such
that ‘P(aj(m7 Y), B(x, ?/)) < 'P(aj (@, y), Bj(w, y)) for (z,y) € U(a). Let

T1 ={(®,y): ' <zx<s +&,¢ >0,y (0) <y <y:(2)}

be a set such that 7, c¢ U(&); ¥ — #,(x), y = #,() are solutions of (58)°
By (55), (57) and by the monotonicity of f with respect to «; we infer that »
and v satisfy in T, the following conditions:

u(@,y) <o@,y), yel§.(2),Fa(a")],

uz(w! y) :'-f(w7 v, u’(wr ?/), uy(w’ y))7
v (2, ¥)>flz, ¥, 0(@,9), v,(z,9), (@,y)el,.
Then we obtain, in virtue of Theorem 2.4 (see Remark 2.3, see also [1]),
that u(z, ¥y) < v(z, y) for (z, y) € T, and = > «'. For a fixed ¢, € (¢, 2"+ &)

we choose ¢ > 0 such that any solution y = y(x) of (58) issuing from
the segment

{(@,y): @ =1, F(l)) —e2 < Y < Y (%) + &1}

is defined for # € [t,, £+ 6) and (=, y(w)) € D, for © € [t,, Z+ ). Let &, > 0
be such a constant that the segment

{(@,9): ¢ =1, (ty) —ea < Y < F(ly) + &2}
is contained in 7';. Denote by T,(t,, ) the set

Ta(tyy &) = {(@, ¥): Lr<z<Z+8,y,(2) <Y < y:(0)},

where ¥ = y,(z) and y = y,(«) are solutions of (58) such that y,(%)
= J(%) —¢&, ¥2(t) = F(%) +¢ and & = min(e,, &,). Since u(ty, ¥) < v(%, Y)
for y € [¥1(%), ¥2(t)] and (60) holds for (z,y) € T'y(t,, ¢), it follows from
Theorem 2.2 (see also [1]) that u(z,y)<<wv(z,y) for (x,y) e Ty(ly, ).
Because (%, %) € T,(t,, &), we have u(Z, ¥) < v(%, ¥).

II. Consider the case when (Z,§)eFr(D,)NnD, and Z > z,, i.e.,
¥ = ¥(%) or § = §(x). Suppose that § = r(x). Let 4 > 0 be such a small
constant that (Z-+8,7(Z+4))eD,.

(a) Assume that (%, 7) satisfies W,, ie., u(#, 7(%)) < v(#, §(@)) for
some & € (%o, Z). Then there exists an e > 0 such that

(i) (@, y) < v(Z,y) for y € [§(%), §(@) +e),
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(ii) the solution y = y,(x) of (58) satisfying the condition y,(Z)
= §(&) + ¢ is defined for » € [@, Z+ 6) and (=, y.(®)) € D, for x € [, Z+ 9).

Let Ty(@,¢) = {(z,9): T<a<T+9, y:(2) <Y< Ya(®)}, where

g(z) for z e [2, Z],
Yi(z) = 1.

r(x) for xe(x,z+9).

It is easy to see that » and v satisty in T4(#, ¢) the differential inequali-
ties (60). Since u(Z,y)<<v(®,y) for y e [¥,(&), ¥,(®)], it follows that
u(w, y) < v(w,y) in T4(@,c). Because (T, 7)eT4(%,e), we have (59).

(b) If (=, y) satisfies W,, then the proof of (59) runs quite similarly
to the proof of this inequality in cases I(b) and II(a).

The proof of statement (59) is completed.

3.2. Theorems on inequalities.

THEOREM 3.1. Suppose that

1° Assumptions H; and Hy are satisfied,

2° the initial functions satisfy the conditions

o(z,y) =y, y) for (z,9)eB,

(61) .
oz, y)<vylz,y) for (z,y)eE—EK,
3° the set K (see (4)) is empty.
Under these assumptions we have

(62) u(z, y) < oz, y)

for (z,y) e D—K.

Proof. At first we prove (62) for (v,y) e D,—K. It follows from

Theorem 2.3_that u(z,y) <v(x,y). Suppose that there exists a point
(%, §) e D, —K such that

(63) u(%, g) = 0(%, §).

Denote by y = #(x) a solution of equati(;n (58) satisfying the initial
condition y(x) = y. It follows from (53), (57), (58) that the function
Yy = g(x) is defined for x € [x,, Z] and (w, §(®)) € D, for x € [m,, ].

I u(2o, 7(2s)) < v (2o, F(2,)), then the point (T, 7) satisfies condi-
tion W,. If u (%, §(%,)) = v (o, 7#(2,)), then by condition 3° and by (4)
we obtain that (z, ) satisfies W,. In both cases we conclude, in virtue
of Lemma 3.1, that (%, ¥) < v(Z, ¥), which gives a contradiction with (63).
Therefore we have (62) in D, —K.
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Consider equation (52) in the set
D) = {(z,9): t<T < ®m;3+0, 7(2) <y < §(2)},
where ? € (2,, a,), and take EuUD — D(t) as the initial set and

(t)('m ) = ¢(z,y) for (w,y)ekE,
A ,y) for (z,y) e D—D(t),
yy) for (x,y) e E,
yy) for (z,y) e D—D(),

a8 the initial functions. Then we have

u(x
p(@
v(x

'I’(t)(w: y) = I

¢z, y) <y (@,y) for (z,y) e BUD—D(t),
o0, y) <40t y)  for y e [F(1), §(t)].
Thus we infer from Theorem 2.2 that u(z, ¥) < v(x, y) for (z,y) € D(?).

The proof of Theorem 3.1 is completed.

Now we consider the mutual situation of solutions of (562) in the case
when K is non-empty.

Let y = §(x), 2 = Z(x), ¢ = §(«) be a characteristic of equation (55)
situated on the integral u of this equation (% satisfies (65) for (z, y) € D,).
Assume that (7o, 7 (%)) € K. Then (a;(ao, #(20)), Bi(ea, §(x,))) € B for
it =1,...,m. Let I' be the biggest interval contained in [z,, @,) such
that (a,-(ar;, ¥(x)), Bilw, g}(m)}) ek for zel’, i =1,...,m. (I' =[a,a)
or there exists an a’ << a, such that I’ = [, a’].) We shall denote by J
the curve y = #(«) for « € I'. Let @, be the plane set formed by all curves §

issuing from K.
Now we have

THEOREM 3.2. Suppose that

1° Assumptions H; and H, are salisfied,

2° the imitial functions satisfy (61) and K is non-empty.

Under these assumptions we have
(64) uw(z,y) =v(@,y) for (w,y)ely,
(65) w(@,y)<o(z,y) for (z,y) eD,~G—L.

Proof. At first we prove (64). Let y = ¥,(z), 2 = 4 (®), g = §,(2)
be a solution of the characteristic system corresponding to equation (55)

dy . dz ~ -
iz = —f(2,9,2,9), ar =f(®,9,2, Q) —qf,(2, 9,2, 9),

d - -
d_i =fy(®,¥,2, Q) +af.(®, 9,2, 9).
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Assume that this characteristic is situated on the integral w. Denote by
¥y = Yy(x),2 = 6(w), ¢ = §2(x) 2 solution of an analogous system corre-
sponding to equation (56) and suppose that this characteristic lies on w.
Assume that (2o, §:(%)) = (7, #a(20)) € K and (v, §,(2)) €@, for zel’,
I' < [, a,). From (57) and (61) it follows that the characteristic systems
corresponding to equations (55) and (56) are identital for (x,y) e E.
Solutions of these systems are uniquely determined by initial data, there-
fore we obtain from (61) that ¥,(x) = ¥.(®), #(x) = 6(z), §,(%) = §a(x)
for z € I'. Since i (z) = u(x, §,(®)), 6(x) = v(@, §,(x)) for v e I, it follows
that the solutions » and v are equal along an arbitrary curve C issuing
from K. The proof of statement (64) is completed.

Now we prove (65). From Theorem 2.3 we obtain that «(z, v) < v(z, ¥)
in D,. Suppose that there exists a point (z, #) € D, — @, Z > @, such that

(66) u(iy 9) =’0(5,37).

Denote by ¥ = #(x) the solution of (58) satisfying the condition %(Z) = 7.
This solution is defined for z e [,, ] and (z, F(x)) € D, for = € [z, Z].
Now, there are three cases to be distinguished.

(a) Suppose that (w,, 7(x,)) = L,;, where

L, = {(z,9): (z,9) EE’ u(z, y) < v(z,y)}.

Then we see that the point (z, 7) satisfies condition W, and we infer from
Lemma 3.1 that «(Z, 7) < v(z, ¥), which gives a contradiction with (66).
(b) Suppose that (#,, #(%,)) € L,, where

L, = {(@,9): (@,9) € K, u(z,y) = v(z,y), (=,9) ¢ K}.

Then in an arbitrary neighbourhood of the point 2, there exists a @, @ > «,,
such that for a certain index j, 1 <j < m, (¢)(8, 7(@)), 8;(&, 7(#))) « E—B.
It follows from (61) and from the monotonicity of f with respect to
that (Z, 7) satisfies condition W,. By Lemma 3.1 we obtain that «(z, 7)
< v(Z, 7), which contradiets (66).

(¢) Assume that (z, 7(%,)) € K. Suppose that (z,7(x)) €@, for
€ [2,, t] and (z, F(2)) € D, —G, for x € (i, Z]. Then in an arbitrary neigh-
bourhood of the point # there exists a &, # > ¢, such that for a certain j,
1<jm, (aj(a'a, 7(3)), B,(@, 37(."6))) e E—E. Now, from the last condi-
tion we infer (see (b)) that (7, #) satisfies W, and consequently u(Z, %)
< »(Z, ), which contradicts (66). Theorem 3.2 is proved.

Remark 3.1. If @, < a+a, and the assumptions of Theorem 3.2
are satisfied, then it is easy to prove that u(z, y) = v(x, y) for (z,y) e G,
and u(z,y) < o(z,y) for (¢,y)eD,—G,—L.

If we accept additional assumptions concerning the functions g, A
and a;, f;, ¢ =1,...,m, we shall to state the sct @&, in a simply way.



Partial differential-functional equations 189

Assume that

(67) o (z, y) = 2 —7,(), Bz, y) =y, (#,y)eD, i =1,...,m

Let
hiz) = hiz—t(e)), we[ay,ay), i=1,...,m, k@) =mink(a),

(68) i

3@ = glo—v(a)), w@elooa), i=1,..,m §a)=mazja).

Now the set K is the segment K = {(#,y): * = 4, ¥ € [¢, d]}, where
¢ = max[g(®), §(7,)], @ = min[h(x,), h(x,)]. (If ¢ > d, then K is empty.)
EXAMPLES (see [2]) 1. If

D 7”( _fq(m 7" .CL‘), %y 7Q)

D_g(») < fq(a”g(a’)yz; U;Q)
(D_F(x) denotes the left-hand lower Dini derivative of F at the point z),

then @, is the set formed by integral curves of (58) issuing from the seg-
ment K for z € [x,, a,).

2. If
(70) D_g(z) > _fq(mig z), 2, 79)1 -D-.i'(w)< _fq(wy z(a"),z; U, Q)
and max[g(z,), §(%)] = §(z), min[h(mo),ﬁ(wo)] =7»(wo>, then
Gy = {(2,y): v €[z, a,), d(x) < h h(x)}.

3. Assume that inequalities (70) are satlsfled and max [g(x,), §(z,)]

= g(w,), min [h(w,), h(%,)] = h(z,). Denote by y,(z) and y,(x) solutions
of (58) satisfying the initial conditions ¥,(%) = g(xy), Y2(z,) = h(2,).
Let

(69)

= {z e [z, a;): ¥,(2) > § ()},

= {® € [@y, a1): Y2(®) < 7" (x)}
and

- y.(x) for xed,,
Yi(z) =

J(z) for z € [y, a,) -,
. Y,(x) for xed,,
2(®) = {5
h(z) for z € [x,, a,) —J,.
Under these assumptions
G = {(z,9): B <r<a,§(2) <Y <y:(2)}.
4. Assume that inequalities (70) nre satisfied and that
(71) max [5(3’0)’ g(mo)] = g(mo)f min [h(mn)s h(wo)] = h(wo)-

Denote by ¥ = y,(x) the solution of (quation (58) satisfying the initial
condition ¥,(z,) = h(z,) and assume that y,(x) > g(z) for x e [z,, a,).
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Under these assumptions
G ={(2,9): ;<2< ay,§@) <y<h(2),
where % (z) = min[y,(z), k(2)].
5. Assume that conditions (70) and (71) are satisfied. Denote by
Yy = y,(z) the solution of (58) satisfying the condition y,(z,) = h(w,).

Assume that y,(z) > §(x) for z € [z, %), T < T< @y, and y,(T) = (7).
Under these assumptions

G = {@,9): % <2<Z, §(@)<y<h@),
where h(z) = min[y,(z), h(2)].

6. Analogously to the case in Examples 4 and 5 the set G, can be
determined in the case when inequalities (70) and the conditions

max [§(x,), 9(2,)] = g(x,),
_ min [ (o), h(2,)] = h{w,)
are satisfied.

The proofs of the construction of the set ¢}; in Examples 1-6 is based
on the fact that each point (¥, ¥) € G, can be joined by an integral curve
y = y () of (58) with some point (z,, §) € K and (z, y(«)) € G, for » € [, Z].

Theorem 3.2 concerns the mixed inequalities between solutions of
equation (52) in that part of D, where z € [x,, a,). In the sequel we con-
sider the mutual situation of solutions of (52) in the entire .D.

Suppose that Assumptions H; and Hj are satisfied, K is non-empty
and that the functions e¢; (¢ =1, ..., m) fulfil Assumption H. Let

Dy ={=z9): zel,f@)<y<i@}, k=1,...,n.

(I, are defined in H,.) We shall now define a sequence of sets GV , ..., G
in the following way.

Assume that conditions (61) hold and consider equation (52) in EuD,.
It follows from Theorem 3.2 (see also Remark 3.1) that there exists a set

AM = {(@,9): 7, <x <01y 9:(0) <Y< By ()}

where ¢, < a,,¢, and h, are continuous functions, such that u(z,y)
= v(z,y) for (z,y) €@V and u(z,y)< v(x,y) for (z,y) e D,—GV—L.

Suppose that the sets G, ...,@® have already been constructed.
We define @*+9 ag follows. Consider equation (52) in BUDU ... UD,,,
and take EuD,uU ... VD, as the initial set and

p(z,y) for (#,y)ckE,

Pe(®,y) = - .
u(z,y) for (z,y)eD,V... UD,,
v(z,y) for (z,9)ekl,

"pk(w’ y) = -~ ~
v(z,y) for (z,y)eDv... UD,,
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as the initial functions. It follows from Assumption H, that there exists

an 1e{0,1,...,k} such that (o(z,¥), Bz ) eby, i =1,...,m, if
(z,y) € I),,t_,_1 “The set GY < D, has the form

GY = {(z,y): » EIZ: 9i(2) <y < hy(2)},
where f, c I, and g¢;, b, are continuous functions (for I = 0 we define
G = B).

(1) I @p(d, ¥) < yi(dz, y) for Z/E[;’(dh), §(a)], then we obtain
by Theorem 2.2 that u(z, y) < v(z, y) in D,,,. In this case G** is the
empty set.

(ii) Let
E® = {(@,9): © = &,y & (F(@), §(@)),
k) - [(w ’y) (’L‘ ?/) EK(k)nG(k) (ai(m; y)’ ﬁi(-z', y)) Eéw],

E® — ﬂ E®,  I® = gWn KO _g®),

im1
If K® is empty, then we obtain by Theorem 3.1 that u(z,y) < v(z, y)
for (z,y) € Dy, and for & > d,. In this case G**Y is the empty set.

(iii) If K™ is non-empty, then Theorem 3.2 implies (see also Re-
mark 3.1) the existence of a set G¥+) gsuch that u(z,y) = v(x,y) for
(,y) e@**) and u(w,y)<o(z,y) for (#,y)e Dy, —G*—LW,

These considerations imply

THEOREM 3.3. If

1° Assumptions H,, Hy, H, are satisfied,

2° K 18 non-empty and the initial fumctions satisfy (61),
then

u(qul) =v(w;'y) for ' Y EG
u(z,y) < ov(x,y) for (z,y)eD—G—L,
-~ n -~ g
where @ = | GY.
=1
Last of all we consider the mixed inequalities between solutions of
equation (62) in the case when the initial functions satisfy the conditions
Pz, y) < y(®,9) for (z,y) e B,
(72) 9@, y) =y(@,y) for (z,9) ek,

p(x,y) > p(x,y) for (z,y) € H,,
where

By ={(z,9): »e@—10, %], 75(x) <y < g(2)},
By = {(m,9): @€ [1—17, %], h(#) < ¥ < $(2)}.

8 — Annales Polonici Mathematici XXXVI.2



192 Z. Kamont

THEOREM 3.4. Suppose that

1° Assumption Hj is satisfied and the functions a;, 8; (s =1,...,m)
defined by formulas (67) fulfil Assumption H,.

2° The functions § and h defined by (68) satisfy the differential inequal-
ities (69).

3° The initial functions fulfil (72).

4° ¢ = max[g(z,), §(2)] < min [h(x,), h(z)] = d, ie, K in non-
empty.

5° LM = {(z,y) e K: u(@,y) =v(z,y),y<c¢}, LP ={=,y)ek:
u(z,y) = v(z,y),y > d}.

Under these assumptions we have

u(x,y) <o(,y) for («,y)eG —L,
w(@,y) =v(z,y) for (z,9) €@,
u(z,y)>o(x,y) for (x,y) eG —LO,

where G* is the set formed by integral curves of (58) issuing from K, G} and G}
are the sets formed by integral curves of (58) issuing from the segments

{ (z, y): w—wor?/elr o) 5 }’ [(w,y): w:'mo’ye(dyg(xo)]]’
respectively. Furthermore D, = G*UGUG;.

The proof of this theorem runs in a similar manner to the proof of
Lemma 3.1 and Theorem 3.2.
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