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Coetficient problem for a class of Mocanu-Bazilevi¢
functions

by P. K. KULSHRESTHA (New Orleans, La.)

Abstract. Let M(a,0,4), a> 0, 0< o<1, A> } denote the class of Mo-
canu-Bazilovié univalent functions f in the open unit disk E(l¢{ < 1) for which
|(J(a,f(z)) —a)/(l-—a)-—Al < 4, z¢E, where

lo) o (@)
e ) =0 =a) =g [+f'(z)]

The coefficient problem for the.class A (a, g, o) is completely solved; the results
obtained are sharp.

1. Let § denote the class of functions f which are regular and uni-
valent in the open unit disk F(J¢| < 1) and normalized by the conditions

(1) f0) =f(0)-1 =0.

Let O, denote the image of the circle 2| =17, 0 < <1, under the
mapping feS, z = r¢’. Then the angle ¢ = arg{f(r¢®)} represents the
argument of the ra.dius vector from the origin to the point f(re®®), while
v = arg{i 7¢"’f'(r¢"”)} is the argument of the tangent vector to C, at
f(r€”®). Many special subclasses of S are obtained by imposing restrictions
on the behavior of these arguments. Thus, if 8} and K, denote the sub-
classes of § of starlike and convex functions of order o, 0 <o <1,
respectively, then feS;(K,) if and only if dp/06 > ¢ (dy/06 = o) for each
r, 0 <7< 1 [11]. The concept of a-convexity of order ¢ is obtained by
combining these conditions on the arguments. Thus, if a > 0 is a real
number, a function f which is regular in E, satisfies (1) and is such that
f(2) f'(2)[z # 0 for z¢E, is said to be an a-convex function of order o,
0 < 0 < 1, if the Mocanu angle 4 = (1 —a)p+ ayp is an increasing funetion
of 6 for fixed values of » [9] and satisfies 0u/06 > o for a given a [B].
We denote the class of all functions f that are a-convex of order o by
M(a, o). If we write

J(a, f(2)) = ﬂ"ﬂ% +a[1+ zj:"(iz))]’
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then fel(a, o) if and only if ReJ(a,f(2)) > o holds for all zeE. Ob-
viously, M (0, o) = Shand M (1, o) = K,. In [5]itis proved that feM (a, o)
for a > 0 if and only if f is a Bazilevi¢ function [1] of type 1/a and order
o of the form

?

1 z
Q f = |+ [ ], e,
0

where geS), and the powers appearing in (2) as well as in the sequel
are meant as principal values. The class M (a, o) therefore consists of
Mocanu-Bazilevié type of univalent functions of order o.

2. The subclass of Mocanu-Bazilevi¢ functions to Dbe investigated
in this paper is defined as follows: Let f be regular in ¥ and satisfy (1);
then feM(a, o, 4) in E, if there exist real numbers a, ¢ and 4, a >0,
0<o<1 and 4 >3, such that for given ¢, 0 and 4

J(a’f(z)) —a

1o —Ai< A, =zeH.

(3)

Obviously, M(a, 0, 4,) < M (a, o, 4,) for given a and o whenever
A, < 4,, and M(a, s, o) = M(a,s). We also note that for given a
and ¢ the class M(a, o, }) is empty, since J(a,2) = 1; in this case the
identity function f(2) = 2z yields equality in (3). Other different classes
of this general kind have been studied, e.g., in [8] and [10],"where mem-
bers of the respective classes turn out to be bounded in E. The members
of M(a,o0,A) are, however, not bounded in E.

Let P(A) denote the class of funections » which are regular in ¥ and
satisfy the conditions that p(0) =1, |[p(2) —4|< A for zeZ and a fixed
A > %. Let 2 denote the class of all functions w regular in ¥ and satis-
fying the conditions w(0) = 0 and |w(2)] < |2| for zeE. It is known [4]
that if peP(4), then

(4) ple) = =128

- =1—-1/4
1—aw(2)’ ¢ =1-1/4,

where we.
Members of the class M (a, o, A) can be represented in terms of the
members of P(A). Thus, in view of (3), feM (a, o, A) if an only if

(5) J(a:f(z))— o= (1—0)p(2), peP(4).
TEEOREM 1. Let f(2) =z+§a,.nz"eM(a, g, A), and let 8, =0, 8,
=(1—a) (frn— )+ aVm_1, "
(6) i, =(1+a)(1—0a),
tn = (1 —0+aa—ao)ae, +a(l—a)f, +aay,_., m

I
IS
o
-
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where a, B, ¥m ore defined by (with a, = 1)

m
Qp = Z(M—k +1)ae6, g0,

k=l

(7) B = D) E(m~k+1)080 s,

k=1
Yo = D k(B +1) 84100 gy,
k=1

and @ = 1-—1/A. Then the coeffioients a, satisfy the following quadratio
inequality :

n—1
(8) 822 < D) {ltl*— 8wl  m =2,8,...
m=1

Equality in (8) holds for the fumction
e 1
-1

fCa (1_eag-)—(l-l'a)(l—u)/aadc]a’ ol = 1.

a

O NE

Proof. Substituting (4) in (5) we get after some simplification

(10)  (1—a){z[f" (A —F(2)f"(2)} + azf(2)f" (2)
= {a(L—a)2[f' () "+ (1 — 0 + aa — ac) f(2)f" (2) + aazf(2)f" ()} w(2).

(oo
Given f(2) = z+ D a,2", we note that

n=2
@ (2) = Dlanz™,  [F@OF = D Bud™ " J@F"(2) = D vme™
m=] Mel M=l

where o, fn, ym are defined by (7). Thus, relation (10) becomes

oo o
(1"_ a) 2 (ﬂ‘m _am)zm"l' a 2 ?"mzm-l-l
Mml me=l
oo -] ]
= {a(l—a) Zﬂmz’”+(1—a+aa——ao) 2 a, 2™+ aa 2 ymz’"}w(z),
Me=1 Mesl M=l
which, in view of the substitutions (6), simplifies to
©0 [
D ={ Dt wle),
Mel m=1
or
13 [~ oo
(11) | Dome™+ Y bn|<| Y tna™s
m=1 men+l Mml

8 — Annales Polonicli Mathematlel 31,3
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m - . .
where the series ) h,2™ is absolutely and uniformly convergent in
Mm=n-+1

compacta on F. Putting z = 7" and performing the indicated integrals
we get

2r n-—1

flzsm?nnefma_{_ 2 hm,meimﬂl ao < f l Zt ,mefmol o

m=1 m=n+1 me=l
which by Parseval’s identity gives as r—1

n—

lemla )jwml, n=23,...,

m=1 me=1

and inequality (8) is obtained on transposing terms.
The method used in this proof is due to Clunie [2], which has also
been used in [7], [8] and [10]. '
Inequality (8) in the particular cases for n = 2,3 gives
(1+a)(1—o)

(12) lag| < l1ta y

(1+a)(1—0)[L+3a+2a+Bac+aa®—o(1l—a)(l+3a)]
2(1+ a)*(1 +2a) )

(13) ey <

The presence of the parameter o makes it very difficult to further
simplify the quadratic inequality (8), or employ any induction scheme
on it. However, some special cases can be obtained from (8) as follows:

If feM(a, g), the bounds in (12) and (13) are

2(1—0) (1—0)(8+8d+a?)

< !
l@e) < 1+a 3 las| < (1+ )2 (1 + 2a)

)

which for o = 0 reduce .to the result given in [5].
If feM (0, o, A), inequality (8) becomes

n—1

Z(k— Pla < (L4 a1 —0)2+ 3 {1+ak—(1+06)a} g,

k=2
which by induction gives

T L+ (k+1l)a—(L+a)ol

4 <
ORI .t ,

k=0
Equality in (14) holds for the function

fl8) = 2(1 —eaz)" D= 1,
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If fel (0,0, o) = 8%, inequality (14) gives the kmown result {11]

n—2

E+2(1—o0)

'anlgn—’?T, 'JL=2,3,...,
23 a

which is sharp for f(z) = 2(1—e2)~*""? | |g] = 1 (see also [7]).

If feM(1, o, A), inequality (8) becomes

n n—1
D RE—1 |l <1+ a1 -0+ D) {(1+8)(1—a)k+ak(k—1)F el
k=2 k=2

which by induction leads to

n—2
l1—a)(1—0)+Eka
(15) lanK” ( )(k+2) y n=23,...
k=0

Equality in (15) holds for the function

4

f(e) = [ (1—eag)=OreXi=legr, o =1.

If feM (1,0, o) = K,, inequality (15) gives the known result [11]

n—2

E+2(1—o0)
Ia,.l<l l————k+2 , m =23 ...,
k=0

which is sharp for

1—(1—ez)*?
20—1 ’

f = [@—eye-tar =

le| = 1.

In view of these particular cases it appears that the function fi{(2)
defined by (9) is an extremal function for the class M (q, o, 4).

3. The coefficient problem for the class MM (a, o, 4) can be com-
pletely solved as follows: Let us write the function f,(2), defined by (9), as

(16) fa(2) = 2H(2),
where
(17) H(z) =1+ ) 'ba2")",
n=1l
n—1

Eﬂ.

(18) by = ) [ [ta+aa o) +kaal.
k=0

nla®(1+na
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Then, if f(2) =z+ } a,2’eM(a, o, 4) it is easy to see that |a,,,]

yes2
n)
_E"(0)
n!

y n=12,.. In fact, the following result holds:

THEOREM 2. Let f(z)=z+ D a,2"eM(a, o, A). Let S(n) be the set of

real

n
oll. n-tuples (@, @y, ..., @,) of non-negative integers for which D) ix; = n,
. el

n
and for each such m-tuple define q by > w; = q. If

Tmal
y(a,q) = ala—1)(a—2)...(a —q) with y(a,0) =qa, and ¢, = ba)

where b, are given by (18), then for n =1, 2, ...

y(a, g—1) "1:21 020-'2 ves c:n

o la! ..,

(19) 1G] <

where summation is taken over all n-tuples in S(n).
Proof. In view of (16) and (17), since

(20) H(z) = [h(2)]" =1+ D tpn#"
n=1
where h(z) =1+ } b,2", we obtain on differentiating (20)
n=1
, h'(2) > o
H(2) =a ) H(2) =n§1 Nl 12",

which on using the power series for %, A’ and H gives

(2i) (Eﬂ amﬂ_,_lz"") (1 + jbﬂz") = a‘(j’ nbnz"“)' (1—!—20? an_Hz").
n=1 Nl n=1 =1

For fixed integer » > 1 we equate the coefficients of 2"~! in (21)
and find that

(22) D lk—a(n—1)]by @y =0 (6 =@ =1).
k=0

Sinee ¢, = 1, we can solve (22) for a,,, and get

n-1
1
(23) 1onl € == D [k~ a(n—h)1op_g gl

k=0
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Equation (23) is a recursion formula that allows us to compute |a, ,,|
from these with smaller index and as such determines a sequence of
|@,4,| in & unique manner. Thus, in order to prove this theorem it would
suffice to show that for each integer n the coefficients a,,, defined by
the equality in (19) do indeed satisfy (23). For this purpose, we proceed
by induction, i.e., we assume for each ¥ =1,2,...,n2~1

Sﬁ y(a,j—1)0,"0," ... ¢,

(24) la’ﬂ'l‘l' < P m1! mzl . wk! )y
2
where j = Y @; and the sum is taken over S(%), the set of all non-negative
t=1
k
k-tuples (@,, @y, ..., @) for which } i@; = k. Now if k < n, we can enlarge
PR

the k-tuple to an n-tuple by adjoining suitably many zeros.
Then any solution of

n
(25) - D =k, k<mn,
i=1

in non-negative integers must give »;, = 0 for ¢+ = k+1,k+2,...,n, and
the inclusion of the factors ¢,”/z;! in (24) does not change the value because
these factors are 1 for ¢ = k+1, k42, ..., n. Hence (24) can be replaced
by '

. zp =y

. I!
3 y(e,j—1)e, 6 ... 0, )
(26) [ty | < 2 Er<n
nll == o !lz!... 2, ! =

n
where j = > @;, and the sum is taken over the set S(k) of all non-negative
i=1 :
nteger solutions of (25). We use (26) in the right-hand side R of (23).
Then
1 N Ik -a(n—B)yle, j—1)6, 40" 6" ... 0,
(27) R=-— P .
k_n s(h) 10 2 ¢ oma ﬂv'

Now let (%, %55 ---y ¥n) be any fixed n-tuple in S(n), so that

n 7n
(28) Dli=n, Dyi=4q.
i=1 =]

We are to determine the coefficient € of ¢,"'a, % ... ¢, * in (27). This

coefficient may arise from combining several terms from the sum and
. . . . . zy &g Ty n A v Vp
in fact such terms arise if and only ife¢, ¢, "¢~ ...¢, " =0, 6, ...0, ",
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To be specific, let ¢ be an index for which y, > 1, and let o, = ¥y, if 7 # a,
. n
and let 2, = y,—1. For this fixed a, we have j = }'»;, = ¢—1. In (27)

i=l

we set n—k = a. If A is the set of & for which y, # 0, then

(29) O = —“Z (n—a—aa)y(a,q—2) .

ola! .. 2!

Inserting the factor %, in the numerator and denominator of (29)
we have

_ _2 Yo(t—G—aa)y(a, ¢—2)

oy Y1l Yal ool Yl
y(a, ¢—2)
= TR Zya(aa-}-a ).

aed

If y, = 0, then the corresponding term in the sum is zero. Hence,
using (28)

yla,q-2)

= ——'—_— At g+ OYg—NY,
IR a;( Yo+ @Ya —"Ya)
y(a, ¢—2)

= nle—(qg—1)]
nY1! Yol ol ! [a—{g—1)

. y(e,g—1)

gyt

which is precisely the coefficient of c{1¢¥2...c!» required on the right-
hand side of (19). Since the argument holds for each fixed (¥1, ¥s) «++) Un),
the proof is complete.

The bounds in (19) are sharp and for a > 0 attained by f.(2) defined
in (9).

The technique used by Goodman in [3] has been employed to get
the bounds in (19) in the compact form.

All particular cases discussed in Section 2 for a > 0 follow from (19).
For ¢ =0, s =1 the above theorem reduces to the result announced
in [6]. This theorem solves the coefficient problem for the class M (a, o, 4)
completely.

The author wishes to thank Professor W.H.J. Fuchs for some
helpful comments.
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