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in C" within a class of plurisubharmonic functions
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Abstract. A study of extermal properties of functional (¥x) introduced by S. S. Chern, H. I,
Levine and L. Nirenberg [1] in the case of a bounded domain in C” is given.

Introduction. Chern, Levine and Nirenberg [1] introduced a class of
semi-norms on the homology groups of a complex manifold.

Namely, let M be a complex manifold of complex dimension n. Consider
the family F of C?-plurisubharmonic functions u on M satisfying the
condition 0 < u < 1. For any homology class y of M with real coefficients
we set, following [1],

\ sup inf |T(d°u A [dd®ul*" 1Y), if dimy = 2k—-1,

(* N[ = % ver Ter
sup inf [T (du A d°u A [ddul*"Y)|, if dimy = 2k,

ueF Tey

where Truns over all currents of y in the sense of de Rham. It can be easily
verified that the mapping

N: I'->R™,

I" denoting the [amily of all homology classes on M, is a semi-norm on I.
The main theorems given in [1] state that N[y] is always finite and non-
increasing under a holomorphic mapping of M (in particular, N[;}] is
invariant under biholomorphic mappings).

In the case of complex manifolds endowed with an hermitian structure a
class of semi-norms (capacities) has been introduced and investigated by
Lawrynowicz [3].

Let D be a bounded domain in C" whose boundary consists of two
components which are (2n— 1)-dimensional smooth differentiable manifolds.
We denote by AdmD the class of C2-smooth real-valued functions on D
which are supposed to be plurisubharmonic on D and equal zero on one
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component of the boundary and one on the other. In our considerations we
assume that AdmD # O.
Let us define the functional ([1])

(%) AdmDsu— [ du A du A [ddu]""'eR.
D

We call the domain D a condenser. With any condenser D we associate the
real number
CapD = inf ([ du A du A [ddu]""?),

ueAdmD p

which is called its capacity.

This paper is devoted to a discussion of the extremal properties of (xx).
We find explicit formulae for the first and second variation of () within the
class Adm D, and prove that the second variation is non-negative. We also
prove that functional (%) attains its minimum at uoe AdmD if and only if

[dd u,]" = 0.

Finally, we prove that if the upper envelope u of Adm D belongs to Adm D,
then u minimizes functional (*#).

To begin with we give three definitions.

DErIntTION 1. Let Dy and D, be two bounded simply connected domains in
C". The set D = D,\D, is called a condenser if

1° Do < Dla

2 Co = Dy\Dgy and C, = D,\D, are (2n—1)-dimensional smooth dif-
ferentiable manifolds.

3° there exists a real-valued C2-smooth function ¥ onD, \ D, which fulfils
the conditions: 0 < u < 1, ul¢, = 0, ulc, = 1 and

H(u, w)(zo) = Y 0*u/0z' 0z*(zo) W' W* 2 0
k=1

for zgeD and w = (w!, ..., w)eC".
Remark. Condition 3° implies that u is C2-plurisubharmonic on D.
ExaMPLE. Let r; > ro > 0. Then the set

P(ro,r;) = (zeC": rg < 2> < ry},

where |z1> = ) |Z'|% is a condenser.
i=1
DEFINITION 2. By the class AdmD of functions admissible for a con-
denser D we mean the class of real-valued functions » which fulfil condition
3° of Definition 1.

Remark. The class Adm D is convex.
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We will now be concerned with the functional
(1) AdmDauwJ(u) = [ du A d°u A [dd°u]"" ' €R,
D

where d = @+ and d° = i (5—6). This functional has been introduced by
Chern, Levine and Nirenberg [1] in the general case of a complex manifold.

Remark. Functional (1) is non-negative [2].
DerFiNiTioN 3. The real number
CapD = inf J(u)
- ucAdmD
is called the capacity of D.

Let 4 and & be arbitrary functions of AdmD. For any t,€[0, 1] the
function u(to) = u+ty(f—u) belongs to AdmD (see remark after Definition
2). Let us consider the function

(2) F(u, h,"): [0, 1]3t—F(u, h,1) = J(u(t))eR,

where h = #—u. Function (2) is a polynomial of degree n+1 with respect
fo .

Let
[ lim [F(u, h, s)—F (u, h, 0))/s for t =0,
s— 0t
3) &J(w(h,t)y = { lim[F(u, h,t+s)—F(u, h,t))/s for te(0, 1),
s—0
lim [(u, h, 1+5)—F(u, h, 1)]/s fort = 1.
L s> 0~

DerFiniTiON 4. We call the limit given by (3) the variation of J at the
point u(t) = u+t(@—u) in the direction of h = iI—u.

Remark. From the above definition it follows that with any ue Adm D
we may associate the set H, = |h = #—u: #icAdmD)| of all directions of
variation at w. It can be easily seen that H, is convex. .

LemMMa 1. The variation of functional (3) at a point u(te) = u+te(d—u),
to€[0, 1], in the direction of h = d—u has the form

8J(u)(h, to) = —(n+1) | h[dd u(ro)]".
D

Proof. Let W(s) = F(u, h, to+s) for seS = [peR: (to+pe[0, 1]].
From the definition of F it follows that W is a polynomial of degree n+1
with respect to seS. By Definition 4, 6J (u)(h, o) is equal to the coeflicient of
W standing at the first power of s. Hence we obtain
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@) 85Ik, to) = [dh A dulte) A [ddu(te)]"* +
-: [ du(te) A d®h A [ddiu(te)]" !+
+(:-— 1) 'j; du(to) A d u(to) A dd°h A [ddu(t)]" 2.

For the proof we need the following identity:
(4" dh A du(to) A [ddu(te)]"™ ' = du(to) A dh A [dd u(ry)]" .

In order to prove (4) we express the left-hand side of it in terms of ¢
and 0:

(5) i@+ h A @—0ulte) A [2i00u(te)]"™
= 21" {[h A Bu(te)—Bh A du(to)+oh A du(te)—
—0h A Bu(te)] A [00u(te)]™ "}
= 21 {[Oh A Bu(to)—Oh A Bu(to)] A [B0u(te)l™~ ).
The latter equality in (5) is obtained from the identities
Oh A du(to) A [00u(ta)]"™ ' =0 and Ok A du(to) A [00u(1]"" = 0.
Analogously, regarding the right-hand side of (4') we have
(6)  i(0+d)ulto) A (3—d)h A [2i00u(te)]
= 27" {[u(to) A Oh—u(t) A Db+ Bu(to) A Dh—
—du(te) A N A [B0u(te)]" ')
= 271" ([0h A Bu(te)—du A du(te)] A [0u(te)]™ ).
From (5) and (6) we arrive at (4').

In view of (4') the variation given by (4) takes the form

() 8Jw)(h, to) = 2£dh A dfu(to) A [ddu(to)]" '+
+(n~1) lj) du(to) A dulte) A dd*h A [dd u(te)]" 2
=2 a{) W ulto) A [dd u(to)]"™! 2 [ hlddu(to)]"+
+(n—1) («L du(to) A deute) A d°h A [dd u(te)]"™2 -
—(n—1) ,I, h[dd u(to)]" +(n~1) ajD hdu(to) A [ddeu(to)]" !

= —(n+1) [ h[dd u(ty)]"
D
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In order to obtain the latter equality we have to apply Weierstrass’ ap-
proximation theorem [4] and then Stokes’ theorem using the boundary
conditions

WoD =0 and  d(u(to)@D) = O.

This proves the lemma.
By Lemma 1 the function

(8) 8Jw)(h, ): [0, 1]— R

is a polynomial of degree n with respect to re[0, 1].
DEFINITION 5. By the second variation of the functional (1) we mean the
first derivative of function (8); we denote it by 62J(u)(t, h) for te[0, 1].

Remark. At the points +t =0 and t = 1 the derivative of (8) is
understood as the corresponding one-sided derivative.

LeEMMA 2. For every pair of functions u, i in AdmD and any t,€[0, 1]
the following inequality holds:

82J()(h, tg) 20, h=ii—u.
Proof. Let u and #i be arbitrary functions in Adm D and t,€[0, 1]. We

notice that 8J (u)(h, to+s) = 8J (u(t))(h, s), h = &—u. By Definition 5 and
by the above remark we have : Ce——

9) 82J(w)(h, to) = —4n(n+1) | hddh A [ddu(t)]"™Y, h =i—u.
D

Taking into account the boundary condition
hjoD = 0
and the identity

{ hdd*h A [ddu(te)]"!

oD

= [ hd®h A [ddu(to)]" ' — [ dh A dh A [ddu(to)]™ 1,
éD ' D
we see that (9) becomes
(10)  8*J(u)(h, to) = dn(n+1) [dh A dh A [du(te)]" ' -
D

~3in(n+1) [ hd*h A [ddu(te)]"?
oD

= in(m+1) [ dh A dh A [ddu(te))"".
D

Since the form dh A d°h A [dd°u(ty)]"! is non-negative [2], our result
follows.
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Tueorem 1. If D is a condenser and uc AdmD, then the following
conditions are equivalent:

(a) [dd"(u| D}]" = O,

(b) 6J (u)(h, 0) = O for every heH,,

(c) J(u) = CapD.

Proof. Let # be an arbitrary function in Adm D and F = F(u, h, 1) be
the function given by (2). By Lemma 1 we have

(11) F(0)=6J(w)(h,0) =0, h=i—u

which proves that (a) implies (b).
Now we show that (b) is equivalent to (c). To see this, it is enough to
remark that

(12) F'() = 82 J(uy(h,r) for te[0,1] and h = di—u.

From (b), (12) and Lemma 2 it follows that F is a non-decreasing function.
Hence

F(0) = F(u, h,0) = J(u) < F(1) = F(u, h, 1) = J(@.

Since #e Adm D is arbitrary, the above implication is proved. The converse
implication is a simple consequence of the mean value theorem applied to F.
Now we shall prove that (b) implies (a). We shall prove this assuming
the contrary and arriving at a contradiction.
Suppose that there exists a point zoe D such that

f(zo) = det [u;x(z0)]1 cingn > 0.

Since D is a domain and f is a continuous function, we can find a polydisc
do(zq, r) such that 4, = D and

713, > 0.
Let
Mj = det[u“"(]]s,-.ksj forj = 1, 2, —eay R

Since ue Adm D, the functions M;, j = 1, ..., n, are continuous and non-
negative in D. The matrix [uz] 4,], <; . <, is hermitian and positive definite.
Therefore M;|4o, > 0 for j =1,2,...,n Let us denote by ¢ > 0 an
arbitrary  function of «class C” (D) such that ¢]4, >0 and
4, < suppp < 4,. Consider the functions 1\7Ij: Dx[—ty;ty] =R for j
=1,2,....n and toe R*, given by the formulae

M;(z, 1) = det[(u+19)5(2)], <iusy for zeD,
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te[—tg:tg] and j = 1, 2, ..., n. The functions Mj are uniformly continuous
on Agx[—to; to). Hence for

zed
we can find a; > 0 such that for every zo€dg and te[—ty; 1ol |t < gj, We
have

IM,(z, )= M,;(z, 0) < 7,
Therefore we obtain

My(z,t) > 0 for zed, and | < g
Let

¢ = min {min lg;, (n+1) | @ [dd"u]"}.
i D

Obviously, ¢ > 0, M;(z, 0) > 0 for zed, and j = 1, 2, ..., n. This means
that the matrix [(v+0¢);z(2)]; <ix<n has all its characteristic roots positive
for every zed,. Since ¢ has its support in d,, it follows that i = u+
+o@eAdm D. Thus the first variation of (1) at the point u in the direction of
h = o¢ has the form

8J(w)(h, 0) = —(n+1) [ op[ddu]" < —o?.
D

The last inequality contradicts our assumption and so the theorem follows.
As a consequence of Theorem 1 we have

THEOREM 2. If the upper envelope of AdmD belongs to Adm D, then it
minimizes functional (1).

Proof. If u is the upper envelope of AdmD, then condition (b) in
Theorem 1 must be satisfied. This implies our statement.
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