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ON THE EXTENSIONS
OF UNIFORMLY CONTINUOUS MAPPINGS

BY

NGUYEN TO NHU (WARSZAWA)

In this note we consider the problem of extensions of uniformly con-
tinuous mappings in uniform spaces and in metric spaces. This problem
has been investigated by several authors (see [3], [4], and [1]).

(E) Let A, X and Y be metric spaces (respectively, uniform spaces)
such that A is a closed subset of X and let f: A — Y be a uniformly con-
tinuous mapping. Under what conditions can f be extended to a uniformly
continuous mapping ¥# from the whole space X into Y?

In Section 1 we consider problem (E) in uniform spaces. Using some
corollaries to Katétov’s theorem we prove that if Y is an injective locally
convex space, then every bounded uniformly continuous mapping from
a closed subset A of a uniform space X into Y can be extended to the
whole space X. Since R' is injective, this generalizes Katétov’s theorem.

In Section 2 we consider problem (E) in metric spaces. It is shown
that a metric space Y € AEU () if and only if ¥ e ARU(IR) and diam (Y)
< oo. We note that, in the sense of Isbell [3] and [4], AEU-spaces are the
same as ARU-spaces.

In [2] Borsuk proved that if X is the union of two closed subsets
X, and X, such that X,, X, and X,NnX, are AR (M)-spaces, then so is X.
An example in Section 3 shows that the corresponding proposition for
ARU (IM)-spaces is generally false, but under some additional assumptions
the proposition holds true.

I wish to express my sincere gratitude to Professor P. Mankiewicz
for his guidance during the preparation of this note and for many valuable
remarks.

1. Some corollaries to Katétov’s theorem. First we recall the following
theorem of Katétov [5]:

1.1. THEOREM. Let R' denote the real line and let A be a subset of a uni-
Jorm space X. Then every bounded uniformly continuous mapping f from
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A into R' admits a bounded uniformly continuous extension F from the
whole space X into R'. Moreover, the extension F of f satisfies the condition

sup{|F (2)|} = sup{|f(2)}.
zeX zed

Now we prove some immediate consequences from Theorem 1.1 which

will be used in the sequel.
Let D be any set. By m(D) we denote_the space of all bounded real

functions on D with the supremum norm. The following corollary is an
immediate consequence of Katétov’s theorem:

1.2. CoROLLARY. For every uniform space X and for every bounded
uniformly continuous mapping f from a subset A of X into m (D), there exists
a uniformly continuous mapping F: X — m(D) such that F|A = f and

sup{|lF' (@)} = sup{llf(2)l}.
zeX xed

1.3. CoroLLARY (Isbell [3]). Let A be a subset of a uniform space
X and let ¢ be a bounded uniformly continuous pseudometric on A. Then
there exists a bounded uniformly continuous pseudometric o* on X such
that o*(x,y) = o(x,y) for every x,y € A and
sup {¢*(#, ¥)} = sup{e(z, ¥)}.
z,yeX z,yed
Proof. Let g: A —m(A) be a mapping defined by (g9(z))y = o(=, ¥)
for x,y € A. Then g is bounded uniformly continuous. Thus, by Corol-
lary 1.2, there exists a uniformly continuous mapping : X — m(4A) such
that G|A = g and

sup{[l& (=)} = ilg{llg(w)ll}-

reX
Setting o*(z, y) = ||G(#)—G(¥)l, we get a uniformly continuous
pseudometric on X having the required properties. This completes the
proof.
1.4. Remark. Suppose that X is a metric space with a metric d and
let o be a bounded wuniformly continuous pseudometric on a closed subset

A of X. Then there i8 a bounded uniformly continuous pseudometric g on
X extending o such that A is also closed with respect to the pseudometricp.

Indeed, putting
e(z,y) = max{e*(z, y),|d(z, 4)—d(y, 4)|},
we get the uniformly continuous pseudometric g having the required
properties.

1.5. Definition. A locally convex space Y is said to be imjective
if whenever 4 and X are locally convex spaces such that 4 is a closed
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subspace of X and T': A - Y is a continuous linear operator, then there
exists a continuous linear operator 7': X — Y which extends 7.

By the Hahn-Banach theorem, R' is injective. The following theorem
is a generalization of Katétov’s theorem.

1.6. THEOREM. Let A be a closed subset of a uniform space X and
let Y be an injective locally convex space. Then every bounded uniformly
continuous mapping [ from A into Y can be exiended to a uniformly con-
tinuous mapping F from the whole space X into Y.

Proof. Let {d,},.; be a family of pseudometrics inducing the uni-
formity of X and let {p,},.; be a family of pseudonorms inducing the to-
pology of Y.

For every y e€dJ, put

U,={ye¥: p,(y) <1}

and let Uy be the polar of U,. Define a mapping H,: ¥ - m(U?) by
(H,y)p = ¢(y) for every y € Y and ¢ € U,. It can easily be seen that H,
is a continuous linear operator from Y into m(U}) such that

(1) H, ()l = p,(¥)

for every ye Y and y € J.

Let f: A - Y be a bounded uniformly continuous mapping from
a closed subset A of a uniform space X into Y. Then for every y € J the
mapping g, = H,o f is also a bounded uniformly continuous mapping
from A into m(U?). Thus, by Corollary 1.2, for every y € J there exists
a bounded uniformly continuous mapping G,: X > m(U)) such that
G,|A =g, and

sup {|I&,(#)lI} = sup {lig, ()11}
zeX zed
Let L(A) and L(X) denote the linear spaces spanned formally by

elements of 4 and X, respectively. Then L(4) < L(X).
Given

x =21,-a:ieL(X), z,€X and 4, eR! for 1<i<n,

i=1

put

(2) g,(2) = max { | a6, |, sup| Yip(a) b
i=1 ved i1

where

3) @ ={pecC(X): p|4d =0, |p(@)—p(¥) < d,(z,y)

for some a € I and for every =,y € X}.
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It is easy to see that, for every y € J, ¢, is a pseudonorm on L(X).
Putting

M = Ng;(0),
yeJ

we easily see that M < L(4).

Finally, let £ = L(X)/M and F = L(A)/M. Then F and F are lo-
cally convex spaces, and F' is a subspace of E. Let us show that ¥ is closed
in E.

In fact, let = ¢ F. Then

v = [ a],
i=1

where ;€ X for 1 <i<n, and 4,,..., 4, are different from zero. Since
x ¢ F, we can assume that =, ¢ A. Let us set B = AU {z;,...,2,}. Then
B is closed in X. Thus there exists an «, € I such that

dao(wl’ B) = inf{dao(wl’ y)} > 0'
yeB
Putting @,(v) = d, (2, B) for every v € X, we easily see that ¢, e @

and gq(z,) > 0.
For every v,

k
?/=[Z.“iyi]eF7 Y1y -2 Y €4,
i=1

we get, by (2),
n k
0,@—9) > | 3 hge(@) = 3 mpe(®s) = Ihlpo(@) > 0,
i=1 i=1

which shows that # ¢ F. This proves that F is closed in E.
Now we define a linear operator T': ' — Y by

n

T([Z}‘iw‘i]) =Z)~if(mf)-

t=1

Then by (1) and (2) we have
P, (1) = ,( 340 = |, ( 3 f@))|
i=1 i=1

= ” i‘l{gy(a’i)

! < Qy( Zn:}‘imi) = q,(2)
i=1
n

for every z = Z}.,.w,- erF.
i=1

Thus T is continuous.
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Since Y is injective, there exists a continuous linear operator T':
E > Y such that TV|F = T.

Setting F (z) = T’ ([x]) for every x ¢ X, we get a uniformly contin-
uous extension F of f. Thus the theorem is proved.

2. Spaces AEU(I) and ARU(IM). The notions of AEU and ARU
uniform spaces were introduced and investigated by Isbell [3] and [4].
In this section we consider metric spaces only, hence we use the following
definitions which differ slightly from those of Isbell [3] and [4].

2.1. Definition. A metric space Y is called an AEU () if, whenever
X is a metric space and A is a closed subset of X, any uniformly continuous
mapping from A into Y can be extended to a uniformly continuous map-
ping from the whole space X into Y.

2.2. Definition. A metric space Y is said to be an ARU(M) if,
whenever Y is a closed subset of a metric space X, then there exists a uni-
formly continuous retraction R from X onto Y.

By Y we denote the completion of a given metric space Y. We have
the following

2.3. PROPOSITION. If Y 18 an AEU (M) (respectively, an ARU(M))
then so s X.

I:roof. Let Y be an ARU (M) and let Z be a metric space contain-
ing Y. Let us put

& ={A: Y «c A c Z such that Y is closed in A4}.

For every A4,, A, € o set A, < A, if and only if A, < 4,. Then &
becomes a partially ordered set satisfying the conditions of the Kura-
towski-Zorn lemma. Let X be a maximal element of /. It is easy to see
that X is dense in Z. Since Y is an ARU (M), there is a uniformly continuous
retraction R from X onto Y. Since Y is complete, the retraction R can
uniquely be extended to a uniformly continuous retraction R from Z
onto Y. So Y is an ARU(M).

The same argument shows that ¥ is an AEU(I) whenever
Y € AEU (). This completes the proof.

Clearly, if Y is an AEU (M), then Y is an ARU(N).
2.4. THEOREM. A metric space Y is an AEU (M) if and only if Y is
an ARU(I) and. diam(Y) < oo.

Proof. Let Y be an AEU (k). Then Y is an ARU (M) and we have
to show that diam(Y) < oc. '

Assume, on the contrary, that diam(Y) = oo. Let {x,} be a sequence
of points in ¥ such that

(4) A&y, Tppg) =M.

8 — Colloquium Mathematicum XLI.2
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Let X = R' (R' being the real line) and let A = N (N being the set
of all natural numbers). Define a mapping f: N — Y by f(n) = x,. Then
f is uniformly continuous on N and N is closed in R'. Let F: R' — ¥ be
a uniformly continuous extension of f. By a lemma of Lindenstrauss [7]
there exists an L > 0 such that

d(f(z), f(y)) < L|z—y|

for every =,y € R' with |z —y| > 1. Then we get

d(f(n+1), f(m) < L

for every n € N, a contradiction with (4). This shows that diam(Y) < oo.

Conversely, assume that ¥ is an ARU(IR) and diam(Y) < oo. Let
f be a uniformly continuous mapping from a closed subset A of a metric
space X into Y. First we consider a special case where f is an isometric
embedding.

Let @ = XUY and let Z = @/ ~, where ~ is the equivalence relation
on @ defined by # ~ y if and only if y = f(x) or y = @. Setting

dx(z,y) if z,yelX,

e(z,y) = dy (2, y) if z,ye¥,
tin.f ldg(x,t)+dply, f(t)} ifxreX and ye¥,
€4

where dx and dy denote metrics on X and Y, respectively, we easily see
that ¢ is a metric on Z, and Y is closed in Z. Let R be a uniformly con-
tinuous retraction from Z onto Y. Then F = R o4, where i: X — Z is the
natural inclusion, is & uniformly continuous extension of f.

Now, let f: A — Y be an arbitrary uniformly continuous mapping.
Putting

h(z,y) = dy( f(2), f(¥)),

we get a bounded uniformly continuous pseudometric on 4. By Remark 1.4,
there ,exists a uniformly continuous pseudometric » on X such that
h|AxA =h and A is closed with respect to the pseudometric h of X.
Let E = X/h and B = A/h < E. Then F is a metric space with the metric
% induced by %, and B is a closed subset in E. It is easy to see that the
mapping ¢g: B — Y induced by f is an isometric embedding. Thus, using
the proof above, we get a uniformly continuous mapping @ from E into
Y such that G|B = g. Setting ¥ = Gok, where k: X — F is the quotient
mapping, we easily see that F is uniformly continuous with respect to
the metric dx and F(x) = f(x) for every « € A. Thus the theorem is proved.
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2.5. Remark. Let (X, d) be a metric space. For every ¢ > 0,x e X
and n € N, put

By(z,¢) ={yeX:d(z,y) < e}
and define B, (@, ¢) by induction:
B,(x,e) ={yeX: d(y,?) < ¢ for some 2z € B,_,(x, &)}.

A metric space (X, d) is said to be uniformly bounded if there is a point
x, € X such that for every £ > 0 there exists an » € N such that B,(z,, &)
= X.

A similar argument as in the proof of Theorem 2.4 shows that every
AEU (IN)-space is uniformly bounded.

2.6. Remark. It is known (see, e.g., [1]) that every Lipschitz map-
ping f from a subset A of a metric space X into R' can be extended to
a Lipschitz mapping F from X into R'. In particular, we infer that R'
is an ARU(IN); however, it is not an AEU ().

2.7. Remark. Let us put ¢(«, y) = min{1, |#—y|} for every =,y e R'.
Then from Theorem 2.4 we infer that (R',g) is not an ARU(M); how-
ever, (R',g) and (R',|-|) are uniformly equivalent.

2.8. Remark. Isbell [4] showed that, for — 0 <a <b <00, (a, b) i8
an ARU(IM). Thus from Theorem 2.4 we see that (a, d), [a, b], (4,b] and
[a, b) are ARU (IM)-spaces.

3. The union of two AEU (9t)-spaces.

3.1. TeEoREM. Let (X, o) be a metric space and let X,, X,, X, be
closed subsets of X such that X = X, VX, and X, = X,nX, # . Assume
that X,, X,, X, e ARU(IR). Then (X, o) € AEU(M) if and only if the
metric d on X defined by

d e(®,y) if (z,9)eX;xX; for i =1,2,
(#,Y) = |int {o(z,t)+ o(y, )} otherwise
teX,

18 uniformly equivalent to o.

Proof. First we assume that X,, X,, X, e AEU(IR). Then, by The-
orem 2.4, diamg(X) < oo. By the definition of d, diam,;(X) < oo. In
order to prove that (X, o) € AEU (M) it now suffices to show that (X, d)
is an ARU(M).

Let Z be a metric space containing (X, d) isometrically as a closed
subset. By a theorem of Kuratowski and Wojdystawski (see, e.g., [2],



250 NGUYEN TO NHU

[6], [8]) we may assume without loss of generality that Z is a convex
set lying in a normed space. Let us put

Zy, ={z€Z: d(z, X;) = d(z, X,)},
Z, = {zeZ: d(z, X)) < d(z, X,)},
Z,=1{eZ: d(z, X,) > d(z, X,)}.

Clearly, Z = Z,VZ,VZ, and X;nZ, = X, for ¢ =1, 2. Since X, is
closed in Z,, there exists a uniformly continuous retraction R, from Z,

onto X,. Let -
'Ri: XiUZo —>X‘UX0 = X‘

be a mapping defined by

_J= for z € X,
Ei(2) = =R°(z) for z € Z,.

Observe that R; is uniformly continuous for ¢+ =1, 2.

Indeed, to show this it is enough to prove that if x € X, and y € Z,
are sufficiently close, then R,(x) = « is closed to R,(y) = Ry(y).

Given any ¢ > 0, let é € (0, ¢/6) be such that if ,y € Z, and d(z, y)
< 46, then d(R,(x), Ry(y)) <¢/2. Let v € X, and y €Z, be such that d(x, y)
< 6. We shall show that d(R,(x), B,(¥)) < &. By the definition of Z; there
exists a z € X, such that d(z, y) < 4. By the definition of d there is a ¢ € X,

such that
d(z,t)+d(z,t) < d(z,2)+ < d(x,y)+d(y,2)+ < 34.

Thus we have
d(z,t) <36 and d(z,1)<30.

Therefore
dit,y)<d(t,z)+d(r,y) <35+6 = 44.
Hence
&
A(Bao(t), Bo(y) < 5 -
Consequently,

d(R,(x), R,(y)) = d(z, Ro(y)) < d(z, 1) +d(t, Ry(y))
= d(, 1)+ d(Ro (1), Ro(y)) < 3% + -25 = e.

The uniform continuity of R, is established.

Since X; e AEU(IMM) and X,UZ, is closed in Z,UZ,, we infer that the
mapping E; can be extended to a uniformly continuous mapping f; from
Z,VZ, into X,.
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Now define a retraction R from Z onto X by
R(2) = f;(?) if 2€Z,VZ, for i =1, 2.

Since f; is uniformly continuous for every ¢ = 1,2, to show that
R is uniformly continuous it is enough to prove that if z € Z,UZ, and
y € Z,UZ, are sufficiently close, then R () is closed to R(y).

Indeed, let ¢ > 0 be given. Since the function f; is uniformly continuous,
there exists a 4 >0 such that if »,yeZ;UZ, and d(r,y) < 4§, then
a(fi(x), fi(y) < /2 for every i =1, 2.

Let x € Z,UZ, and y € Z,UZ, be such that d(z, y) < 4. It follows from
the definition of Z, that there is an a € [0, 1] such that

z = ax+(1—a)y €Z,.
Since d(z,?) < d(x,y)< 6 and d(y,2) <d(z,y) < d, we infer that
d(E(@), B(y)) < d(R(2), B(9) +d(R(2), B(y)
= 4(f(@), i(@) +a(fa(e), @) < 5 + 5 =&

Thus R is a uniformly continuous retraction.

Conversely, assume that (X, ¢) e AEU (). Let us prove that ¢ and
d are uniformly equivalent.

Again, we can assume that (X, g) is a closed subset of a convex set
Z lying in a normed space. Let R: Z —- X be a uniformly continuous
retraction. To show that d and ¢ are uniformly equivalent it suffices to
prove that if {x,} < X, and {y,} < X, are such that ¢(z,, y,) — 0, then
a(Zp5 Yp) — 0.

In fact, let

(@) Ya] ={2€Z: 2 =tw,+(1—1)y,, 0 <T<1}.

We easily see that, for every »n € N, there exists a 2, € [2,, ¥, ] such
that R(z,) € Z,. Since

0(2ns R(2,)) < diam(R[z,, y,]) and o(y,, R(2,)) < diam(R[z,, ¥,]),
we infer that
@@y Yn) < 0(%ns RB(2,)) + 0B (2,), ¥,) < 2diam (R [x,, y,]) - 0.

Thus the theorem is proved.
3.2. Example. Let ABC be a triangle in the plane R? and let

X = [AB)U(BC]JU[04], X, =[AC]U[CB), X, = [CA]U[4B).
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Then X,, X, and X,NnX, c AEU(M) (see Remark 2.8). Moreover,
X, and X, are closed in X, but the completion of X is not an AR (M)
(in the sense of Borsuk [2]). Therefore, by Proposition 2.3, X is not an
ARU ().

3.3. CoROLLARY. In the notation of Theorem 3.1, if at least one of the
subsets X,, X, i8 compact, then (X, o) € AEU(IM).

Indeed, it is easy to see that if one of the subsets X,, X, is compact,
then the metric d is uniformly equivalent to p.
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