ON LUCAS AND LEHMER SEQUENCES
AND THEIR APPLICATIONS TO DIOPHANTINE EQUATIONS

BY

K. GYÖRY (DEBRECEN), P. KISS (EGER) AND A. SCHINZEL (WARSZAWA)

Consider a Lucas sequence \(\{u_n\} = U(A, B) \) and a Lehmer sequence \(\{v_n\} = V(A, B) \) defined by

\[
u_n = \frac{a_1^n - \beta_1^n}{a_1 - \beta_1}, \quad n > 0,
\]

and

\[
v_n = \begin{cases}
\frac{a_2^n - \beta_2^n}{a_2 - \beta_2} & \text{if } 2 \nmid n, \\
\frac{a_2^n - \beta_2^n}{a_2^2 - \beta_2^2} & \text{if } 2|n,
\end{cases}
\]

respectively, where \(a_1, \beta_1 \) are roots of the trinomial \(x^2 - Ax + B \), \(a_2, \beta_2 \) are roots of the trinomial \(x^2 - A^{1/2}x + B \), and \(A \) and \(B \) are relatively prime non-zero rational integers such that \(a_1/\beta_1 \) and \(a_2/\beta_2 \) are not roots of unity. As is known, \(u_n \) and \(v_n \) are rational integers. It is also known that for every integer \(m > 1 \) with \((m, B) = 1 \) both \(\{u_n\} \) and \(\{v_n\} \) have infinitely many terms divisible by \(m \), and that the sets of prime divisors of \(u_n \) and of \(v_n \) \((n = 2, 3, \ldots) \) are infinite. There is an extensive literature of the linear recursive sequences and their applications; for recent general results we refer to the papers by Schinzel [14]-[18], Mignotte [10], [11], Stewart [21]-[23], Loxton and van der Poorten [9], Kubota [6]-[8], Rotkiewicz and Wasen [13], and to the references mentioned therein.

A prime \(p \) is called a primitive prime divisor of a Lucas number \(u_n \) if \(p \) divides \(u_n \) but does not divide \((a_1 - \beta_1)^2 u_2 \cdots u_{n-1} \). Similarly, \(p \) is called a primitive prime divisor of \(v_n \) if \(p \) divides \(v_n \) but does not divide \((a_2 - \beta_2)^2(a_2 + \beta_2)^2 v_3 \cdots v_{n-1} \). By a more general theorem of Schinzel (see Theorem 1 and its Corollary 2 in [18]), for any Lucas sequence \(\{u_n\} \) and for any Lehmer sequence \(\{v_n\} \) the numbers \(u_n \) and \(v_n \) have primitive prime divisors for \(n > n_0 \), where \(n_0 \) is an effectively computable absolute
constant. Using a recent result of Baker [1], Stewart [21] (see also [23])
computed explicitly the constant occurring in Theorem 1 of Schinzel [18],
and so he obtained the explicit value \(e^{453 \cdot 4^{67}} \) for \(n_0 \). Furthermore, Stewart
proved in [21], [23] that there are only finitely many Lucas and Lehmer
sequences whose \(n \)-th term, \(n > 6, n \neq 8, 10 \) or \(12 \), does not have a primiti
te divisor and these sequences may be explicitly determined.

In this note we show that the above-quoted theorems of Schinzel [18]
and Stewart [21], [23] together with the effective estimates obtained for
the solutions of the Thue-Mahler equation (see, e.g., Coates [3], Sprindžuk
[20], and Kotov and Sprindžuk [5a]) and a recent result of Kotov [5]
imply the following

Theorem. Let \(p_1, \ldots, p_s \) be a finite set of primes with \(\max(p_i) = P \)
and denote by \(S \) the set of non-zero integers which have only these primes
as prime factors. If \(t_x \) is the \(x \)-th term of a Lucas sequence \(U(A, B) \) or a Lehmer
sequence \(V(A, B) \), \(x > 4 \) or \(x > 6 \), respectively, and

\[
t_x \in S,
\]

then

\[
x \leq \max\{e^{453 \cdot 4^{67}}, P + 1\}
\]

and

\[
\max(|A|, |B|) < c_1, \quad |t_x| < c_3,
\]

where \(c_1 \) and \(c_3 \) are effectively computable numbers depending only on \(P \) and \(s \).

We remark that for \(x \leq 6 \) or for \(x \leq 4 \) and Lucas sequences our
theorem does not remain valid in general.

Recently Loxton and van der Poorten [9] have proved that if \(\{u_n\} \)
is a fixed non-degenerate linear integer recurrence of order \(m \geq 2 \) whose
auxiliary polynomial has at least two distinct roots, then the set of posi
tive integers \(n \) such that \(u_n \in S \) has density zero.

An easy corollary to our Theorem is as follows:

Corollary 1. Let \(S \) be defined as in the Theorem. Then the equation

\[
\frac{u^x - v^x}{u - v} = w
\]
in integers \(x, u, v, w \) with \(x > 3, u > v \geq 1, (u, v) = 1, w \in S \) implies

\[
x \leq P \quad \text{and} \quad \max\{u, w\} < c_3,
\]

where \(c_3 \) is an effectively computable number depending only on \(P \) and \(s \).

Denote by \(P(n) \) and \(v(n) \) the greatest prime factor and the number of
distinct prime factors of a positive integer \(n \), respectively. The following
corollary is a special case of Corollary 1.
COROLLARY 2. Let \(n > 1 \) be a fixed rational integer. Then the equation

\[
\frac{u^x - v^x}{u - v} = n^y
\]

in integers \(x, y, u, v \) with \(x > 3, y \geq 1, u > v \geq 1, (u, v) = 1 \) implies

\[x \leq P(n) \quad \text{and} \quad \max\{u, y\} < c,
\]

where \(c \) is an effectively computable number depending only on \(P(n) \) and \(n \).

Remarks. 1. Similar corollaries can be obtained by applying our Theorem to special Lehmer sequences.

2. Szymiczek [24] proved that, for fixed \(u, v \), equation (3) has at most one solution in positive integers \(x, y \).

3. In [19] Shorey and Tijdeman obtained a number of conditions each of which implies the finiteness of the number of solutions of the equation

\[
a \frac{u^x - 1}{u - 1} = bn^y
\]

in integers \(x > 2, y > 1, u > 1, n > 1 \). From their result our Corollaries 1 and 2 follow in the special case \(v = 1 \).

4. Some special cases of equations (2) and (3) have been collected by Hugh [4]. For further related equations and results the reader may consult the papers [24], [4], [19] and [12].

Proof of the Theorem. Let \(t_x \) be the \(x \)-th term of a Lucas sequence \(U(A, B) \) or a Lehmer sequence \(V(A, B) \). It is known (cf. [22]) that if \(q \) is a primitive prime divisor of \(t_x \) and \(x \geq 4 \), then \(x \leq \max(4, q + 1) \). Put

\[
n_1 = \max\{4^{\log_2 4}, 4^{67}, P + 1\}.
\]

If \(x > n_1 \), by the above-quoted theorem of Stewart [21], [23] \(t_x \) has a prime factor different from \(p_1, \ldots, p_s \). So \(t_x \in S \) yields \(x \leq n_1 \).

Let \(d \geq 3 \) be an integer and denote by \(\Phi_d(y, x) \) the \(d \)-th cyclotomic polynomial in a homogeneous form. Let \(\xi = e^{2\pi i/d} \) and let \(\alpha \) and \(\beta \) be roots of the equation \(x^d - Kx + B = 0 \), where \(K = A \) or \(K = A^{1/2} \). Clearly, \(\alpha + \beta = K \) and \(a \beta = B \). Put \(E = \alpha^2 + \beta^2 \), where, obviously, \(E = K^2 - 2B \). Following Stewart [21], [23], we get

\[
\Phi_d(\alpha, \beta) = \prod_{\frac{1}{d} \leq d \leq \frac{\varphi(d)}{d}} ((\alpha - \xi^i \beta)(\alpha - \xi^{-i} \beta)) = \prod_{\frac{1}{d} \leq d \leq \frac{\varphi(d)}{d}} ((\alpha^2 + \beta^2) - (\xi^i + \xi^{-i})a \beta) = F_d(E, B),
\]

where \(F_d(y, x) \) is a homogeneous irreducible polynomial of degree \(\varphi(d)/2 \) with rational integer coefficients. The maximum absolute value of its coefficients can be estimated from above by an explicit expression in \(d \).
Suppose now that \(t_x \in S \) and \(6 < x \leq n_1 \). Then we obtain
\[
 t_x = \frac{a^x - \beta^x}{\alpha - \beta} = \prod_{d \mid x \geq 1} \Phi_d(\alpha, \beta) \quad \text{or} \quad t_x = \frac{\alpha^x - \beta^x}{\alpha^x - \beta^x} = \prod_{d \mid x} \Phi_d(\alpha, \beta),
\]
whence, by (4), we have
\[
 \prod_{d \mid x} F_d(E, B) \in S.
\]
(5)

Thus
\[
 F_x(E, B) \in S.
\]
(6)

In view of \((A, B) = 1 \) we have \((E, B) = 1 \).

If \(x \neq 8, 10 \) and 12, then \(F_x(E, B) \) is of degree \(\varphi(x)/2 \geq 3 \) and, by the theorem of Coates [3] or Sprindžuk [20], the Thue-Mahler equation (6) has only finitely many solutions in integers \(E, B \), and an effectively computable upper bound \(c_6(P, s) \) can be given for \(\max(|E|, |B|) \) and so also for \(\max(|A|, |B|) \). In cases \(x = 8, 10 \) and 12 the left-hand side of equation (5) has at least three distinct linear factors in \(E \) and \(B \) and, using an appropriate formulation of a recent theorem of Kotov and Sprindžuk [5a], we also get \(\max(|A|, |B|) < c_6 \) with an effectively computable number \(c_6 \) depending only on \(P \) and \(s \).

It remains to consider the case \(t_x = u_x, \ x = 5 \) or 6. We have \(4t_x = (2B - 3A^2)^2 - 5A^4 \), \(3t_6 = A[(3B - 2A^2)^2 - A^4] \) and, since \((A, B) = 1 \), we obtain \((2B - 3A^2, A)|2 \) and \((3B - 2A^2, A)|3 \).

By a theorem of Kotov [5] on the greatest prime factor of \(\alpha x^m + \beta y^n \) with \(m = 2, \ n = 4 \) the relations \(t_x \in S \) or \(t_x \in S \) imply
\[
 \max(|2B - 3A^2|, |A|) < c_7(P, s) \quad \text{or} \quad \max(|3B - 2A^2|, |A|) < c_7(P, s),
\]
which gives an upper bound \(\max(|A|, |B|) \).

Proof of Corollary 1. Suppose that (2) holds for some integers \(x, u, v, w \) with \(x > 3, \ u > v \geq 1, \ (u, v) = 1, \ w \in S \). Then \((u^x - v^x)/(u - v) \) is the \(x \)-th term of the Lucas sequence \(\{u_n\} = U(A, B) \), where \(A = u + v > 0, \ B = uv > 0 \) and \((A, B) = 1, \ D = A^2 - 4B \neq 0 \).

First we derive the required upper bound for \(x \). If \(p \) is a prime, \(p|u_n \) and \(p \nmid u_m \) for \(0 < m < n \), then, as is known, \(n \leq p \) (since \(D \) is a perfect square). Furthermore, if \(n > 2, \ u_n \) has a primitive prime divisor except for \(n = 6, \ u = 2, \ v = 1 \) (see [25] or [2]). Therefore, apart from \(x = 6, \ u = 2, \ v = 1, \ u_x \in S \) implies \(x \leq P \). But if \(x = 6, \ u = 2, \ v = 1 \) and \(u_x \in S \), then \(S \) must contain 7, and so \(x \leq P \) also holds.

In case \(x > 4 \) we may apply our Theorem and we get \(\max(u, w) < c_8(P, s) \) with an effectively computable number \(c_8(P, s) \). Finally, for \(x = 4, 5 \) and 6 it follows from the result of Coates [3] and Sprindžuk [20] that (2) has only finitely many solutions in \(u, v, w \) and \(\max(u, w) < c_9 \) with an effectively computable number \(c_9 \) depending only on \(P \) and \(s \).
REFERENCES

Reçu par la Rédaotion le 10. 10. 1978;
en version modifiée le 15. 2. 1979