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ON SOME C-TOTALLY REAL SUBMANIFOLDS
IN A SPACE WITH SASAKIAN 3-STRUCTURE

BY

TOSHIHIKO IKAWA (TOKYO)

1. Introduction. Let M({ , >, V) be a Riemannian manifold. We assume
that M has a Sasakian 3-structure (&, @;n, ¥;(, 0). By M we denote a
submanifold of M. If ¢ is tangent to M, and ¢X is tangent to M for any
tangent vector X of M, then (&, ¢) is called invariant on M. If ¢ is normal
to M, then (¢, @) is called C-totally real on M. We shall give the same
definitions for (n, ) and ((, 6). If a submanifold M is C-totally real with
respect to (&, ¢) and (1, ¥) and invariant with respect to (¢, 6), then we can
say without loss of generality that M is 2-C-totally real and 1-invariant. If M
is C-totally real with respect to (¢, @), (n, ¥), and ({, 6), then M is called 3-
C-totally real.

In the previous paper [2] we studied fundamental properties of sub-
manifolds in a space with Sasakian 3-structure. Especially, we considered an
integral formula of 2-C-totally real and 1-invariant submanifolds. In this
paper, we shall study the integral formula of 3-C-totally real submanifolds.
The notation used here is the same as that of [2].

2. Preliminaries. Let M({, ), V) be a Riemannian manifold and M a
submanifold isometrically immersed in M. If we denote the covariant differ-
entiation of M by F, then the second fundamental forms B and A are
given by

VXY—VXY=B(X’ Y)’ <AN(X)9 Y>=<B(X’ Y), N>’

where X and Y are tangent vectors of M, and N is a vector normal to M.

If the second fundamental form is identically zero, then M is said to be
totally geodesic. The mean curvature vector p is defined as u = (Tr B)/n, where
TrB is the trace of B and n =dim M. If 4 = 0, then M is said to be minimal.
If the second fundamental form B is of the form B(X, Y) = (X, Y) u, then M
is said to be totally umbilical. If [A"!, A"?] = 0 for any normal vectors N,
and N,, then the second fundamental form of M is said to be commutative.
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The covariant derivatives of the second fundamental form are given by

(PxB) (Y, Z) = Dy B(Y, Z)-B(Vx Y, Z)-B(Y, Vx 2),
(2.1)
{VxB) (Y, Z), N> = {(Vx A"(Y), Z),

where D is the linear connection in the normal bundle.

3. 3-C-totally real submanifolds. First, using calculations similar to those
in [2], we can prove the following propositions:

ProPOSITION 1. Let M be a 3-C-totally real submanifold in a Riemannian
manifold with Sasakian 3-structure. Then for any tangent vector X of M the
vectors @ X, Yy X, and 0X are normal to M.

PrOPOSITION 2. Let M be an m-dimensional 3-C-totally real submanifold in

a Riemannian manifold M (dim M = 4m+ 3) with Sasakian 3-structure. Then
(1) @X =Dx¢, YyX =Dyxn, 60X = Dy{;

(i) A°X(Y) = 4°"(X), AY*(Y) = A" (X), A*X(Y) = A" (X);

(iii) A*=0, A"=0, A*=0.

THEOREM 1. Let M be an m-dimensional 3-C-totally real submanifold in a
Riemannian manifold M (dim M = 4m+3) with Sasakian 3-structure. If the
second fundamental form A satisfies (VA)* =0, (VA)" =0, and (VA)f =0, then
M is totally geodesic.

Proof. For any tangent vectors X, Y, and Z of M, we have

(3.1)  (VzB)(X,Y), & =<(D;B(X, Y), &
= —(B(X, Y), D;¢&) = —<B(X, Y), 9Z)

by (2.1) and Proposition 2. Similarly, we get the equalities
(3.2) {VzB) (X, Y), n) = —<B(X, Y),yZ>,
(3.3) {7;B) (X,Y),{> = —=<B(X, Y), 6Z

which, by (iii) of Proposition 2, complete the proof.

COROLLARY 1. Let M be an m-dimensional 3-C-totally real submanifold in
a Riemannian manifold M (dim M = 4m+ 3) with Sasakian 3-structure. If the
second fundamental form A of M is parallel, then M is totally geodesic.

Let N, be any unit normal vector of M. Then we write A instead of AN
to simplify the notation. We choose a local field of the orthonormal frame
\€1, ..., em) in T,(M) (pe M). Then we can see that the normal space T, (M)
is spanned by

loe;, Ve, Oe;,, E,n, 0} (i=1,...,m).
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Unless otherwise stated, we use the convention that the ranges of indices
are the following:

ihj=1,....m, a,b=1,...,3m,
I=1,...,3m, 3m+1, 3m+2, 3m+3.

THEOREM 2. Let M be an m-dimensional minimal 3-C-totally real submani-
fold in a Riemannian manifold with Sasakian 3-structure. If the second funda-
mental form of M is commutative, then M is totally geodesic.

Proof. Since the second fundamental form of M is commutative,
choosing a suitable orthonormal frame {e,, ..., e,} in T,(M) we see that the
whole second fundamental form can be simultaneously diagonal. Then, by
Proposition 2, we have the following matrix representation:

0. .
A% = .;_'_.... i

0

5 i

Since M is minimal by assumption, 4; = 0. Similarly we have A% =0 and
A% = 0. On the other hand, we see that 45 =0, A" = 0, and 4°=0. Thus
M is totally geodesic.

CoOROLLARY 2. Let M be an m-dimensional 3-C-totally real submanifold in
a Riemannian manifold with Sasakian 3-structure and of dimension 4m+3. If
M is totally umbilical, then M is totally geodesic.

Next we shall study the integral formula of 3-C-totally real
submanifolds.

Let M be an m-dimensional 3-C-totally real minimal submanifold in a
unit sphere S*"*3(1). Then we have the Simons’ type formula

(34) V2A=mA—AoA—A0A,
where the operators A and A4 are defined as follows:
A='AcA and 4-Y (adA’)ad A
I

We obtain
A - (ad A%ad A°

by Proposition 2.
LEMMA. We have (VA, VA>—||A]|* > 0.
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Proof. From (3.1)-(3.3) it follows that
(VA, VAY =T ¥ (V.. A) (e), (V.. A) (e)>

i,j I

=Y ¥ AP, A (e), (V., A (e)>+

i,j a

+ 2 [P, AF (e), (Ve, AF (e))>+ (Ve A (e), (Ve A (e)>+

+ (P, AF (&), (7., AF (e))]
=T T AP, AF (e, (7o, AF (e)>+

i,j a

+T [CA™ (e)), A7 (e))+<A™ (e), A (e) )+

+<A™ (e)), A% (e)>]
=Y Y V., A (e, (7., AF (e)>+I A%,

i,j a
which completes the proof.

We put S, = Tr(4° 4% and S, = S,,. Since S,,b is a symmetric (3m, 3m)-
matrix, we can assume it is dlagonal for a suitable frame. We have ) S,
= ||A||*>. From (3.4) we get a

(VP2A, Ay = m||A||>*—(AcA+A40A4, A)
= m||A||*- Z(s,)2+ Y Tr(A® A>—A® A9

a#*b

Hence, using the well-known inequality from [1], we have

(3.5) —(V?A, A) = —m||A4]*+ Z(S,)z— Z Tr(A° A®— A® 4°)?
a#*b
ml|AlI*+2 Y S,S,+ Z(S.,)2
a%tb
—_— 2_ 2__ 2
[(2 I )HAII m]IIAII 3m Eb (Sa—Sp)".

Using the Lemma and (3.5), we have the following theorems:

THEOREM 3. Let M be an m-dimensional compact minimal 3-C-totally real
submanifold in a unit sphere S*™*3(1). Then

f [{(2— 31) I~ (m+ 1)}||Au2- - T - s,,)z] >0.

M a>b
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THEOREM 4. Let M be an m-dimensional compact minimal 3-C-totally real
submanifold in a unit sphere S*™*3(1). If the second fundamental form A
satisfies the condition

I14]1? < 3m(m+1)/(6m—1),

then M is totally geodesic.

THEOREM 5. Let M be an m-dimensional minimal 3-C-totally real submani-
fold in a unit sphere S*™*3(1). If the sectional curvature of M is constant, say
C, then either C =1 (in this case, M is totally geodesic) or C < 0.

Proof. Since M is of constant sectional curvature C, we have
(3.6) (A-C)KY,ZXKX,W>—<X, Z) (Y, W) =<(B(X, Z), B(Y, W))—

by the Gauss equation. Putting X = ¢; and W= 4" (¢;) in (3.6) and summing
over i, we get

37  —(1-0)<A"(Y), Z) =}, (A" A" A°(Y), Z)— A" ™(Y), Z).

Hence

(3.8) (C=DIAlI> =} 3 <4°A%(e), A°A*(e))—(A oA, 4).

ab i

If we put Y=2Z =¢; in (3.6) and sum over i, we have

(39 (1-C)(m—1) <X, Wy =) (A*A°(X), W).

Hence we obtain

(3.10) (1-C)(m-1) 4> =) Y (A" 4" A* A’(e), ).
ab i

On the other hand, from the definition of 4 we get
(3.11) {404, A) =23 3 [CA°A°A* A%(e), ey~ A* A* A° A(e), €;)].

ab i

Putting (3.10) in (3.11), we obtain
(3.12) (oA, A>=2(1-C) m—D[|AIP=2F ¥ (A° 4> 47 AP(e), e,.

ab i

From (3.8) and (3.12) it follows that

(3.13) (AoA+A0A, A) =2(1-C)m||A||*— (A0 A4, A).
By (3.9) we have

(3.14) (AoA, A =(1-C) (m—1)||4]|%.
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Putting (3.14) in (3.13), we get
(3.15) (AoA+A0A, Ay =(1-C) (m+1)||A|>.
Therefore, (3.6) and (3.15) imply |

VA, VA)—|lA|? = —Cm(m*-1) (1-0),

which, by the Lemma, completes the proof.

Remark. Let i be the natural isomorphic immersion of the m-
dimensional unit sphere S™(1) into $*™*3(1), that is, for any point peS™(1)
the immersion i is given by i(p) =(p, 0, 0, 0). Then i is a standard example
of a 3-C-totally real submanifold.
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