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Local stability of the functional equation
characterizing polynomial functions

by ZeigNEW GaIDA (Katowice)

Abstract. In the paper, we give theorems characterizing functions with locally bounded
differences of higher orders as well as some results concerning approximalely multiadditive
functions on restricted domains.

1. Introduction. In recent years, various aspects of conditional Cauchy
functional equations have been studied (see, e.g., [3] and [8]). In particular, if
D < R? is an open disc (or more generally, an open and connected subset of the
plane) and

D,:= {xeR: there exists a yeR such that (x, y)e D},
D,:= {yeR: there exists a xeR such that (x, y)e D},
Dy:={x+yeR: (x, y)eD},

then one can show that any function f mapping D, wD,u D, into an Abelian
group X and satisfying the equation

fx+y)—f(x)=f(y)=0 for all (x,y)eD

differs from an additive function by some constants a, b and a+b on D,, D,
and D,, respectively (cf. [2]).

Furthermore, Skof ([10] and [117) has pointed out that this result may be
combined with the classical Hyers theorem on the stability of the Cauchy
functional equation. Namely, if f: D,uD,uD;—=X (X, |'|]) being now
a Banach space) fulfils the inequality

Ifx+9)=f (xX)—f Wl <&
for all points (x, y) from a triangle
D:={(x,y)eR* x,y>0, x+y<a}
or from an open disc
D:={(x, Y)eR* (x—xof +(y—yo)* <r’},

then f is close to an additive [unction.
AN



120 Z Gajda

In what follows, the symbol 4, will stand for the difference operator
defined by

4, f():=f(x+ =S ).

The superposition of the operators 4, ,..., 4, will be denoted by 4, ., .If
y,=...=y, =y, then we simply write 4} instead of 4, ,(with n y’s)

A function f mapping an Abelian group G into a linear space X over the
rationals is called a generalized polynomial or, alternatively, a polynomial
function of p-th order if it satisfies the functional equation

4 f(x) =0
for all x, ye G. It is well known (see e.g. [4]) that this equation is equivalent to

Ayl...yp‘l-lf(x) = 0

where x, yi,..., y,4+ run over all elements of G.
Moreover, it was shown in [4] that any polynomial function f of p-th
order may be uniquely represented in the form

f=fo+f1+ +j;a

where f;, is a constant and f, (k= 1,..., p) is a diagonalization of a symmetric
k-additive function F,: G*—= X.

The following two results concerning the functions which satisfy locally
the equation of generalized polynomials are due to Székelyhidi [12]:

(A) Let a > 0 and p be a positive integer. Let f: [0, a) — R be a function
such that

A8 f(x)=0 for all x,y=0, x+(p+1)y <a.

Then there exists a polynomial function g: R — R of p-th order, i.e., a function
satisfying the equation

A**1g(x)=0 for all x, yeR,
such that f is the restriction of g to [0, a).
(B) Let » >0, let p be a positive integer and let

fi(=rS/1++172, r/1+(p+1)2) >R

be a function such that

AT fix)=0 for x*+y? <r2.

Then f is the restriction of a polynomial function g: R— R of p-th order.
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It is also well known (cf. {1], [6], [13] and [14] that the functional
equation of polynomial functions is stable in the sense that any solution
f+ R—=X (where (X, |||) is a Banach space) of the inequality

142+ f(x)| <e for all x, yeR

is uniformly close to a polynomial function of p-th order.

In fact, the same result remains valid for functions defined on an arbitrary
Abelian group. In the present paper, however, we shall restrict ourselves to the
case of functions whose domains are subsets of the real line only.

Following Skof [10], we are going to combine the results from {1] and
[12] in order to obtain some local versions of the stability theorem for
polynomial functions. Among others, we shall give approximative analogues of
theorems (A) and (B) quoted above. In the course of our considerations we get
some theorems characterizing approximately multiadditive functions on cer-
tain restricted domains.

2. Local stability of multiadditive functions. In the sequel, (X, [|*|) will
always denote a Banach space, whereas Z and N will stand for the sets of all
integers and positive integers, respectively.

We start with a lemma which is contained implicitly in [10]. For the sake
of completeness we include its short proof.

LeEmMMA 1. Let ae(0, ), n>0, b:=%a and let @: [0, a)—» X satisfy the
inequality

lo(x+y)—@x)—@Wl <n for x, y, x+y€[0, a).
Then the function . R— X defined by

Y(x):=np(b)+¢@r) for x=nb+r, neZ, re[0,b)
has the properties:
(1) I+ y) =g )—y¥OI <20 for x, yeR;
(2) lpC)=y )l <n  for xe[0, a).

Proof. Let x =mb+r, y =nb+s for some m, neZ and r, se[0, b). We
distinguish two cases:

(i) r+s€[0, b); then
I (x+y)—w(x)—¢ W
= |[(m+n)@(b) + @(r +s5)— [mo(b)+ @(r)]—[np(b)+ ¢ (s)]|

= |lo(r+s)— ) —eB)| <7,
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(i) r+se[b, a); then r+s = b+q with some ge[0, b), whence

I (x+y) =y x)-y O
= [(m+n+1Dod)+@(q)—me®)+ ()] —[ned)+ e ()]
= le®)+o(@—oe)— oGl
< o)+ 0@ —e®+g)l + o +s)— @) — o)l < 27.

For x€[0, b), the equality ¥ (x) = ¢(x) holds while for xe[b, a) we have
x = b+r with some re[0, b) and, consequently,

le(X)=¥ I = e+ —e®)—e@)l <7
which ends the proof.
Our further considerations rest on the following:

LEMMA 2. Let ¢, a€(0, ), peN and f: [0, a)’ - X. Suppose that for each
ie{l,..., p} the inequality

(3) “f(xl""’xl'—h x;+xll's xi+l,“" xp)—f(xla"" Xi—1 x'i’ Xitlsenes xp)
—f(xls-“) xi—l: x’ile xi+1s---a xp)” ‘s- €

holds for all x,,..., x;—y, Xi, x{', Xi+X{', Xi41,..., X,€[0, a).
Then for every ke {0, 1,..., p} there exists a function h,: R*x [0, a)" % - X
with the properties: i

(4) if k>0, then h, is additive in each of the variables x,..., x,;
(50 if k< p, then for each ie{k+1,...p},
PGy ey X gy XiHXE, Xig gy .ees X))
=R (Xys s Xim1y Xy Xiggyeees X)) =g, s Xim gy XY Xiv gy, X))

Ssk(xl,...,x0:=%d._.g|%ﬂ's
holds for all x,,..., X, €R, Xy, s Xymy, Xiy X[, Xi+ X, Xp41,..., X,€[0, a);
6 Mhlxysoos x)=f(xgs ooy X < 83 i= 32— 1)e

for all x,,..., x,€[0, a).

Remark. If k=0, then the expression g/(x,,..., x,) occurring in (5,)
reduces to the constant gy:=¢.

Proof of Lemma 2. In the case where k = 0, it suffices to put hy:=f.

Next, let us assume that for a certain k—1€{0, I,..., p—1} we have
already proved the existence of a function h,_,: R*"! %[0, a)’ **! - X with
the required properties (4,_,), (5,-,) and (6,_,).
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Put b:=4a and define g,: R*x [0, a)’"*— X by the formula
gk(xli-n;xp)::
M ((Xgsees X1 By Xpeqqseens Xp)F M 1 (X 50y Ximty 7y X g5enes X))

for x;,..., x,~1€R, x, =nb+r, neZ, rel0, b), x,4,,..., x,€[0, a).
Directly from the definition of g, and from (4,_,) it follows that

(7) g, is additive in each of the variables x,,..., x,_, (if k—1 > 0).

Fix arbitrarily x,,..., X,-,€R and x,,,,..., x,€[0, a). On account of
(5,—,) we have in particular

o 1 (egs e vy Xm 15 XhF X5 Xyt g50 05 Xp)
—hy (Xga ey Xk 15 Xio Xt 1seens xp)
=R (X gy X1 X5 Xar 15 es X
ey (xg,.sx_y)  for all x;, xi, x;+xy €[0, a),
which, by virtue of Lemma 1, ensures that
(8)  1gu(xys-es Xpmgs Xk XY Xpt 152105 Xp)
=G (Xys ey Xim 1y Xy Xt 15eeon Xp)—Gu(Xqseeey X g Xy Xt 15005 Xp)
< 26— 1(Xq,.00s X—1) for all xx, x;€R
and
) Ngleyseers Xpseors X) =Ry (Xg500y Xps s X
< &—y1(%15000s X—,) for x,€[0, a).

Moreover, if k<p and ie{k+1,..., p}, then for x,,..., x,_;€R,
x,=nb+r,neZ, re[0,b), Xp41,..s Xim1, X0, X[, Xi+ X!, Xi414,..., X,€[0, a),
we get

(10)  [gaegseees Xpyovvs Xim 1y X{FXE 5 Xt 1seens Xp)

— G (Xgseeis Xpyoons Ximo 1y Xis Xit 150005 Xp)
=G (Xgs oo Xpsoo s Xim 15 X1 s X g5 en s X

Al Whgm 1 (g oees Xgmps Dy X s Xim gy XtHX], Xig 1,005 Xp)
~hy 1 (6 Xm s By X s Xio 1y X0 Xk g, ey xp)
— 1 (e, ey Xy Dy X gaeees Ximta Xis Xig 150005 Xl
F = (X es Xm 1o s Xiggoees Xim s XiFHXE s Xig1a00ny Xp)
R (X ey Xy s Ty X1 woes i 1> Xl Xik 15000y Xp)
e (X gy Xy Py X greves Xim 15 Xi's Xip 150005 Xp)|

S+ D=1 (Xgseeey X q).
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Now, define the function h,: R*x [0, @)’ *= X as follows:

|
(1 h(xy,..., %)= ]ﬂ;,g"(xl""’ Xy 1s MXps Xyggaeney Xp)
for x;,..., x,€R, X\4y,..., X,€[0, a).
By (8) and the celebrated Hyers theorem (cf. [5]; see also [9], Theorem
17.1.1 and Corollary 17.1.1), the limit occurring in (11) exists and h, is an
additive function of x, such that

(12)  Ngalxyseon X)) =h (g, oy X)) < 28—y (xg,0 000 X 4)

for all x,,..., x,€R, X4y y(,..., x,€[0, a).
Applying (7), one can easily check that h, remains additive in the variables
Xyy-eoy Xy (if k—1> 0). Consequently, h, fulfils condition (4,).

If k<p and ie{k+1,..., p}, then for x;,..., %, _,€R, mx, =n,b+r,,
mEN, "mEZ, rme[ol b)a xk+1s---5x{—1:x'h xi’- xi+.¥;’.x.~+1,...,xpe[0, a), we
infer from (10) that
GrlX 10y Xim gy MX, Xja 1y enen Xpm gy Xi+ X7 Xpagyeny Xp)

m

(13)

_gh(xlv--! X —1y MXpy Xpafy0oey Xj=1, x;' Xig1seens xp)
m

_gk(xl,..., Xk=1sMXpy Xpw1yeeey Xi-1s x;l. Xit1aeeny xp)
m

(Inql+1)

< 8 (Xyyos X4y).

Since

Inml kal Irml

_g —

b mb’
we have

el Pl b

m b "mb™ % b
Thus, passing in (13) to the limit as m — o0, we obtain
(X 10 ey Xy ens Xy gy X XE ) Xt gseens X,)
=R (X gy Xy Xm gy Xy Xitgnenns x,)

_hk(xl""’ xh""" xi—l’ x;’a Xithseeen xp)"

[l
QTE,‘_I(XI..... Xk-l) =8,‘(x1...., x,‘)
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for x,,..., x.€R, x..,..

y Xioyy Xiy X1y Xi+ X0 Xiggae-er IPE[O, a), which
means that h, satisfies condition (5,).
Relations (9) and (12) together yield

"hk(xl""* xp)—hk—l(xlv

o X € 3 (xy, ey Xy y)
for all x,,..., x,_;€R, x,,..., x,€[0, a). Since g, _,(x,..., x,-,) <2* ‘¢
provided that x,,..., x,_, €[0, a), we conclude that

ey s X)) =Ry (xy,.00, x )l < 3-25 e

for x,,..., x,€[0, a). Hence, and from the assumption that h,_, fulfils (6, _,)
we derive

WXy ees Xp)=f gy ey X < 327 Te43(257 1 — 1)e

=3(2*—1)e = §,
which shows that (6,) is valid for the function h,.
Induction on k completes the proof.

for x,,..., x,€[0, a),

THEOREM 1. Let g, ae(0, ), peN and f: [0, a)?’—X. Suppose that
f satisfies inequality (3) for every ie{l,..., p} and for all x,,..., x,-, xj, x{

Xi+x{, Xi+1,..., X,€[0, a). Then there exists a p-additive function h: R®—» X
such that

(14) Th(xy, . ey X,)=f (Xq,.

Xl < 3(2F-1)e
Jor x,..., x,€[0, a).

Moreover, if f is symmetric, then one can require h to be symmetric.
Proof. To prove the first part of our theorem, it is enough to put A:=h,
from Lemma 2.

If, additionally, f is symmetric and h is a p-additive function fullilling (14),
then we define a new function A by

1
ﬁ(xl. veey xp):= ;’—!Zh(x,‘”,..., x,(,,)), Xiveeor xPER,

where the summation runs over all permutations o of the set {1,..., p}. Then
h is a symmetric p-additive function such that

||F(x,,..., x,)—f(xp---- xp)"

1
< EZ |Ih(xﬂ(1)! sy xﬂ(P)) —f(xﬂ'“)’ AR xd(pl)”

< 3(2"-1e  for xy,..., x,€[0, a),
so that h has all the properties desired.

1 1
Egh(xa(l)' ey xc(p))_azﬂ:f(xw(l): ) xa(p))

Annales Polonici Math. 52.2
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THEOREM 2. Let ¢, a€(0, ), peN and f: (—a, a)’ - X. Suppose that
f satisfies inequality (3) for every ie{l,..., p} and for all x,,..., X;—1, X, X,
Xi+x{, Xj41,...,%,€(—a, a). Then there exists a p-additive function h: R - X

such that
(15} h(xg,eees x)=f (g, 000 X)) < [3(2P—1)+2p]e
for x,..., x,e(—a, a).
Moreover, if f is symmetric, then one can also require h to be symmetric.

Proof. According to Theorem 1, we can find a p-additive function
h: R > X (symmetric, if f is symmetric) such that (14) holds for x,,...,
x,€[0, a).

We shall prove that for any ke{0, 1,..., p} the following implication
holds true:

(16 if x,,..., x,€(—a,a) and exactly k of the numbers x,,...,x
are negative, then

1 s X)—h(xg, .., Xl < [3(27—1)+2K]e.

Condition (16,) results immediately from (14). Suppose that (16, _,) is valid for
a certain k—1€{0, 1,..., p—1}. Choose numbers x,, ..., x,€(—a, a) such that
precisely k of them assume negative values. Let for example, x; < 0. Then

P

1S Oeqy s X =h00 ooy X S A,y Xim gy =X Xyt 10eee X))
—~f(Xg s Ximy, — X, xi+1,---.xp)||
FUSOeqsens Xicay =X Xpagseees Xp)
Hf(Xyss Xim 1y Xpy Xig 15000y Xp)
—flxysees %-1, 0, xi+l!"'vxp)"
N2 gy Xim1a 0, Xik1s000s X))
—fxyy ooy x-1, 0, xi+1!""xp)”

< [B2P—1)+2(k—1)]e+2e = [3(2P = 1)+ 2k]e.

Induction on k guarantees that (16,) holds for each ke{0, 1,..., p} and,
consequently, the proof of our theorem is completed.

In the remaining part of this section we are going to present similar results
concerning approximately multiadditive functions on the following two types
of restricted domains:

Sp={(x;,.... x)e[0,a): x,;+...+x,<a}

and

T,={(xy,..., x,)€(—a, a): |x,|+... +|x,| < a}.
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LEMMA 3. Let ¢, a€e(0, o0), peN, and suppose f: S,— X to be a function
satisfying inequality (3) for every ic{l,..., p} and for all x,..., X;—y, X}, X{,
Xi+1r-.0 Xp€[0, @) such that X+ ... +x;— +xi+x{+ . +x,<a. Ifn;,....n
are fixed positive integers, then

1f(ryxys s mpxp)=(ryom) f (s X ) < [(my0-.0ny)— 1]
Jor x,,..., x,€[0, a) such that n;x,+...+n,x, <a.
Proof. First we shall show that for given ie{1,..., p} and neN we have
A7) IS e Ximgs P X oy %) —0f (g, oo X S (1= 1)
for xy,..., x,€[0, a) such that x, +...+x,_;+nx;+x41+... +x, <a.

If n = 1, then (17) is trivially fulfilled. Assume (17) true for some ne N and
take x,,..., x,€[0, @) with x +... +x,_ +(x+1)x;+ x4, +... +x, < a. By
the hypothesis,

IfCeyseees Xm gy (BH1) Xpagyenns X)— (1) f (g, .0, X
KNS (eqsenes Xim 1, X+ X5 Xig 150005 Xp)
— (s eves Xim gy BXps Xyt 15envs Xp)—=f (Xgseeey Xgy vy X}
F ey enns X1, BXy, Xin 1,00, Xp) =R (Xg,.00, X))l
<e+(n—1)e =ne

whence (17) follows by induction on a.
Finally, for arbitrarily chosen x,...,x,€[0,a) such that
mx;+...+n,x, <a we get

[ flnyxy,.-o, —(n-.. np)f(xl’ » Xl

< "f(nlx1="" npxp)_nlf(xl’ MaXgsenos NpXp)ll
+ny | S (g, nyXgs e, mpX =Ny f Xy, X5, N3Xg,s..e, 1X,)|
+ryn, | (X, Xg, B3Xas.ony BpX) =3 f (X1, X5, X3, NyXyg, .o, 1,X )|
ooty M (X ees Xpm1a X )= (xg, o0y X

L[, —D+nn,—)+nnymy— D+ ... +(ny...0p5- 1) (n,—1)]e

=[(ny...on;)—1]e

which was to be shown.

LeMMA 4. If n,,..., n, are positive integers such thatny +...+n, < 2-p—1,
then ny...on, < 277!
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Proof. Evidently, the assumptions of our lemma imply that at least one of
the integers n,,.., n, must be equal to 1. Without loss of generality we may
assume that n, = 1. Thus

n+...+n,_y <2(p—1),

and consequently,

ng+..+n, \' ! -
Moo, =Ryc By S('—l?‘u) <2t

which completes the proof.

In what follows, the symbol @, will denote the set [0, a/p)®. It is clear that
Q,< S,

LEMMA 5. For any (y,,..., y,) €S, there exists a point (x,...., x,)€Q, and
integers n,,...,n, such that y, =n;x,...,y, =n,x, and ny-....n, < 207!

Proof. Let [2] stand for the integral part of a number z and put b:= a/p.
With this notation we define

n;:=[y;/b]+1 and x;::=y/n, fori=1,...,p.
Notice that y, =n;,x; and (x,,..., x,)€Q,. Indeed,
/bl b < y; < ([y:/b]+ Db = n;b,

so that x;<b for i=1,..., p.
Moreover, since (yy,..., y,)€S,, we have y,+...+y, < a which means
that

[0y +..+y,)/b] < p—1.
Hence
m+.+n,=0y/bl+... +[y,/bl+p < [(yy+... +y,)/bl+p < 2p—1
which on account of Lemma 4 implies that
nyon, < 2071
This finishes the proof.

Theorem 1 jointly with Lemmas 3 and 5 allow us to prove the following
theorem.

THEOREM 3. Let ¢,a€(0, o), pe N and let f: S,= X be a function satisfying
inequality (3) for every ie{l,.... p} and for all x,,..., Xi_ 1\ X\y X'y Xis1eeers
x,€[0, a) such that Xyt + X+ X+ X+ X4 +...+x, <a. Then there
exists a p-additive function h: RP —» X such that

1Ay X)) =f (xyheos X S ke for (x,,..., x,)€S,,
where k,:=3-22"1_2r_1,
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Moreover, one can require h to be symmetric, provided so is f.

Proof Since 0, = S,, Theorem 1 assures that there exists a p-additive
function h: RP— X (symmetric, if f is symmetric) such that

(18)  lhlxys oy xp)=f(xy,ocu x ) < 3(2P=1e  for (xq,..., x,)€0,.

In view of Lemma 5, to an arbitratily chosen point (y,,..., y,)€S, one can
assign a point (x,...,X,)€éQ, and numbers n,,...,n,eN such that
Yy =MXp,..., Yp=n,%, and n,-...-n, < 2°71, Then by Lemma 3, we have

IS Grseees )=y em) S (xy,, XIS [y om)— 1] < (27 1= 1)e.
Hence and from (18) we derive
1S D1 Yo) =B s YIS NSy s y)=(nyeomy) S (g, oy X
+ng o f(xq, s x)=h(xy, ..., X))
< (2P —1)e+2771-3(2P - 1)g = (3-22P71 —2°—1)¢
so the proof is finished.

We complete this section with a theorem establishing an analogue of
Theorem 3 in which the domain of the function in question is T, instead of S,,.
One can easily prove this result using Theorem 2 and repeating (with slight
alterations) the reasoning which has led us from Theorem | to Theorem 3.
Therefore, we shall only formulate the result omitting the detailed proof.

THEOREM 4. Let ¢, ae(0, c0), pe N and let f: T,— X be a function satisfying
inequality (3) for every i€ {l,...,p} and for all x,,..., Xi_y, Xie g, X{, Xg415---»
x,€(—a, a) such that |x |+ ... +]xi— |+ xil +Ix7]+ x4 4|+ ... +Ix,| < a. Then
there exists a p-additive function h: R*— X such that

Mhixy, ..., x))=f (g, XM < kpe  for (x4,..., x,)€T,
where kj:= 3227+ (p—1)2°"1 —1.
Moreover, one can require h to be symmetric, provided so is f.
3. Functions with locally bounded (p + 1)-th differences.

THEOREM 5. Let ¢, a€(0, o) and pe Nu{0}. If a function f: [0, a)=» X
satisfies the condition

(19) “Ahl...h,.ﬂf(x)" <e forall x,hy,..., hy+1€[0,0)

such that x+h,+...+h,,, <a, then there exists a polynomial function
g: R— X of p-th order with the property

(20) If)—g)l < le for xe[0, a)
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where
p
lo:=1 and IL:=[]k+1) forp=1,
i=1

k, being the constant defined in Theorem 3.

Proof. The proof runs by induction on p and is based on ideas similar to

those of [1].
If p=0, then ||4,/(0)| <e¢ for all he[O, a), ie,

1/)~f O]l <e for x€(0, a).

Setting g:= f(0) = const, we are through.
Now suppose that the theorem holds true for a p = g—1eNu {0} and let
S [0, @)= X satisfy

(21) I8h,..hger SO <& for all x, hy,..., hgy,€[0, @)

such that x+h,+ +h,4;<a.
The formula

Fxy,..,x):=4y.5f0) for (x;,..., x)€S,
defines a symmetric function F: S,— X such that
”F(x]_""i Xi-1> x'1+xli’: Xi+ 15000y xq)
—F(xy, oy Xim gy Xy X gy ees X)=F %y, .00y Xm0, X5 Xiegaeay X

= "Ax....x.- ..x.”...:q[dx;-l-.t;'f(o)"Ax;f(o)-d.l]'f(o)]"
= IIAx....n-l..t;.x;.’.:” |x.f(0)“ <E

for every ie{1,..., g} and all x,,..., x;—y, X}, X/, X4y, ..., X, €[0, a) such that
Xp+...+x_y+xitxi+X4+... X, <a.

Applying Theorem 3, we can find a g-additive symmetric function
H: R*— X fulfilling

(22) IIF(xl,..., xq)_H(xl""’ xq)“ <k
Put

& for (xg,...,x)eS,.

1
Gq(x,,...,xq):=E H(xp,.oo0y %), (xy,..., x,)eRT,

and let g,: R— X be the diagonalization of G, ie,

9,(x):= G,(x,..., x), xeR.
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Further, let f*(x):= f(x)—g,(x) for x€[0, a) and choose arbitrarily x, h,,...,
h,e[0, a) with x+h; +...+h, <a Then by (21), (22) and Lemma 2 from [4]
(see also [9], Lemma 15.9.2) we have

I Any..ng S* O < N Bh,y. by S OV~ Aby.ong S O + | Ay, S O) = Ay 1, 9, (X
= 1dpy.hgs S O+ 1F(hy, ..., h))—ql Gylhy,..., h)|
<et|F(hy,..., h)—H(hy,..., h)| < (k,+1)e.

From the induction hypothesis we deduce that there exists a polynomial
function g*: R— X of order g—1 such that

If*(x)—g*) < lp-1(k,+ e  for xe[0, a),
and consequently,
If () —g,(x)—g*X) < e for xe[0, a).

Since g:= g,-+g* is a polynomial function of g-th order, we arrive at (20)
for p =gq and the proof is finished by induction.

With the aid of Theorem 4 in a similar manner one can also prove the
following result concerning functions defined on a symmetric neighbourhood
of zero.

THEOREM 6. Let ¢, ae(0, o) and pe Nu{0}. If a function f: (—a, a)» X
satisfles  condition (19) for all x, hy,...,h,r1€(—a,a) such that
x|+ |h |+ ... +|hp4+ 1l < a, then there exists a polynomial function g.: R—X of
p-th order with the property

If(x)—g@) < e for xe(—a, a),

where

14
=1 and I:=]]Kki+1) forp>1.
=1

In what follows, we are going to strengthen the preceding results in such
a way that (19) will be postulated only for equal values of k,,..., hy+ . We
begin with the following lemma.

LEMMA 6. Let ¢, ae(0, o), pe N, and suppose that f: (—a, a)— X satisfies
the condition:

(23) |48 fx)| <& for all x, he(—a, a)

such that x+({p+1)he(—a, a).
If b:=(p+1)p~'a, then there exists a function F: (—b, b)—>X such that
(i) |4 F(x)| < (2P*'—1)e for x, he(—b, b) provided x+(p+1)he(—b, b);
(i) | fx)—F)l <e for xe(—a, a).
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Proof. Since kx/(p+1)e(—a, a) whenever xe(—b, b} and ke {0,..., p},
the function F: (—b, b)— X is well defined by the formula

F(x):= i (—1)"“‘(”:1)_/'(kx/(p+k)), xe(—b, b).
k=0

If we confine ourselves to x’s from (—a, a), then

S(x)+ Z( 1pris "(p+l)f(kx/(p+l))“

= 454 L, FO)l <

1/ ()=F) =

which yields (ii).

Further choose x, he(—b, b) such that x+(p+1)he(—b, b). Then for
every ke{0,..., p} the points

X b's h k
.k - - =
Y e and kp+1+('p+l)kp+1 p+l(x+(p+1)h)

lie in the interval (—a, a), and therefore

+1
:Z (—1)”“'"("; ‘)F(x+jh)“
=0

pt1 P

_ +1-j{ P+} wfP+ x+1h

e () e (UG
P p+1l

=X (—1)"-*(”“; 1) Y (—I)P“-J("T ‘)f(k-x/<p+ 1)+jk-hj(p+ 1»"
k=0 J=0 1

= kZ( 1)?~ k(p+l)4fm(p+1)f(k'x/(P+1))“

P
P11\ _ ap+1_
Skgo( ' )8—(2" 1)e.

This implies (i) and accomplishes the proof.

145 F(x)l| =

COROLLARY 1. Assume that ¢, ae(0, o), peN and f: (—a, a)—» X s
a function satisfying (23). Let b2 a and

n:=min{ke Nu{0}: ((p+1)/pf-a > b}.
Then there exists a function F: (—b, b)— X such that

(), 14" 'F(x) <(2°*' —1)"e for x, he(—b, b) with x+(p+ 1)he(—b, b);
(1), |f(x)=F(x)|l < ne for xe(—a, a).



Local stability of the functional equation 133

The corollary above results on applying Lemma 6 n times. Let us recall
here a fact (cf. [9], Theorem 15.1.2, and [4], Theorem 2) which turns out to be
useful in the proof our next theorem.

LemMma 7. Let f: R— X be an arbitrary function and fix hy,..., h,.;€R.
For any €,,..., €,4,€{0, 1} put

pt+1l p+1
(24) Bortger= = 2 hlls Be,i= ), &by
j=1 ji=1

Then for every xe R we have

1

@25) dumg SO)= Y (=lpteteea R L h L L)

= C1Ep+]
81,--nEp+1=0 »

THEOREM 7. Let €, a€(0, ), peN and suppose [: (—a, a)-» X to be
a function satisfying condition (23). Then there exists a polynomial function
g. R— X of p-th order such that

If(x)—g(¥) < lpe  for xe(—a, a)

where
lyi=n,+2°*127* 1)1, n,:=min{keNu{0}: (p+k)/p)* = p}.
Proof. Denoting p-a by b, one can easily see that
n, = min{ke Nu{0}: ((p+k)/p)-a > b}.

In virtue of Corollary 1 there exists a function F: (—b, b)— X fulfilling
conditions (i),, and (ii),,-

Now, let us choose arbitrarily x, h,,..., hpr1€(—a, a) such that
x| +1hy|+ ... +1h,+4| < a, and for a system of indices ¢,,..., £,4,€{0, 1} let

elements h;, . ., and A, . be given by (24). Since the following relations
hold:
p+1
X+ By .ep. | S IXl+ Y IRl <a<b,
j=1
p+1 rt+1i
Meyepl < YIRS Y IR <a<b,
ji=1 Jj=1
pt+1 p+1
R T+ DR ey = X+ ,Z (1—(p+1)/)e;h)| < |x|+p _21 |l
=1 j=
p+1

<p(xi+ Y Ihj)<pa=b,
j=1

J
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it becomes apparent that the points x+h ..., 5. and
X+ hy.aps + @+ 1R, belong to the interval (—b, b).

Ei{ulp+ 1

Bearing in mind (25) and the fact that F fulfils (i),,, we infer that

”A’l)...llpq.],F(x)”
1
S Y M Rtk )l S 2010 =1

Hence and from Theorem 6 it follows that we can find a polynomial
function g: R— X of p-th order such that

IF(x)—g(x)ll < L,22*(2P** —1)re for xe(—a, a).
Finally, taking into account (ii), , we obtain for xe(—a, a),
1£G)—g@l < I fO)=Fe)l +IF(x)—g(x)| < nye+1,2P71(22% 1 —1)re,
which completes the proof.

The subsequent theorem shows that a corresponding result is valid for
functions whose domain is a neighbourhood of an arbitrary point x,€eR.

THEOREM 8. Let x,€R, & ac(0, ), peN and assume that a function
t (xg—a, Xq+a)— X satisfies the condition:
0 0

142+ f(x)| <& for all xe(xy—a, xq+a) and he(—a, a)

such that x+(p+1)he(xy—a, x,+a). Then there exists a polynomial function
g. R— X of p-th order such that

1f(x)=g(x) <lpe for xe(x,—a, xo+a).
Proof. Define a function f*: (—a, a)—» X by
ft(t):= f(xo"'t): IE(—G, a)-

Take t,he(—a, a) such that t+(p+1)he(—a, a) and put x:= xy+t. Then
x and x+(p+1)h belong to (x,—a, x,+a), which yields

141 401 = 142% f o +0)) = 144 S ()l < e

Let g*: R— X be a polynomial function of p-th order, whose existence
results from Theorem 7, such that

If*@—g*@i < le  for te(—a, a).
The formula
g(x):=g*(x—x,), xeR,

determines a polynomial function g: R— X of p-th order. Moreover, if
x€(xq—a, Xo+a), then t:= x—x,e(~a, a) and

1/ ) =gl = I/ *@)—g* @l < Iye,

which was to be proved.
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Performing a suitable change of variables in Theorem 8 applied for p = 1,
we are able to give an affirmative answer to a question of Kominek [7]
concerning the stability of Jensen’s equation on an interval,

COROLLARY 2. If a, beR, a< b and f: (a, b)—> X is a function such that
12/ Blx+ )~ )=fO)|| <& for x, ye(a, b),

then there exists an affine function g: R— X, i.e., the sum of a constant and an
additive transformation, such that

1S (x)—g()ll <48  for xe(a, b).
THEOREM 9. Let &, re(0, ), peN and suppose f: (—r\/-lm,
r\/l—+_(p_+l?)—vx is a function such that
145+ f(x)l <& for all (x, y)eR? satisfying x*+y* < r’.
Then there exists a polynomial function g: R— X of p-th order such that
1) =g <mye  for xe(—r/1+(+1)%, r/1+(p+1)),

with a constant m, depending on p only.

Proof We apply the method used in the proof of Theorem 3 from [12].
Let r,:=r and select a ¢, €(0, r,) such that

{(x, e(—g., )% x+(+ye(—g, 0,)} = {(x, )eR: x*+y? < r}}.

By Theorem 7 there exists a polynomial function g: R— X of p-th order such
that

1f(x)—g(l <m, & for xe(—ey,0,)
Setting

rim =B oyimr JTHGFIN = o )
J1+p? ,/
we derive the following implication: if (x, y) varies in the disc {(x, y)eR*:
x?+4y? < r}}, then x+ky falls into (—g,,0,) for k=0, 1,..., p, whereas
x+(p+1)y runs over the whole interval (—g,, @,).
Consequently, if the antecedent of the implication above is fulfilled, then

£ e+ +1)y)—g(x+ @+ 1yl
< || f(x+@+ DY) =4+ fx)+ 45 g0 —glx+ @+ DY)+ 1457 S
P

Z )p+1 k(P+1) (x+ky)— 2( 1)p+1 k(P+l)f

k=0 k=0

< i(pﬂ)ﬂf(nky) glx+kp)ll+2 < @77 —Dmp e +e =im, e
k=0
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which means that
| f(x)—g(X)| € mp2e for xe(—e,, €2)-

Similarly, setting

@ L ~/1+(p+1)2=g<~/1+(p+1)2)2
U ST e T e

one can show by the same argument that there exists a constant m, 3 > 0 such
that

I/ (x)=g(x)|| < m, e for x&(—es, ¢3).

3
V1+(p+1) o1,
J1+p?
after a finite pumber of analogous steps we arrive at
If(x})—gx)ll <m,e for xe(—r/1+(+1)% r/1+(p+1)})

with some constant m,e(0, o). This completes the proof.

Since

Remarks. We have to admit that the constants k,, k,, [,, [,, and
I, determined in Theorems 3-7 increase very fast as p— 00. We do not claim
that our estimation of these constants is sharp and cannot be improved. What
appears to be important is the fact that all these constants are independent of
the size of intervals forming local domains of the functions we deal with. On the
other hand, the stability of a functional equation is very often understood in
the following way: if a function satisfies the equation only with a certain
accuracy (up to a constant ¢ > 0), then it differs from a solution of the equation
by less than a constant 4 > 0. In this formulation the relation between ¢ and
d is not of primary importance.

Finally, let us note that majority of our results can easily be extended from
the case of the real line to that of an arbitrary finite-dimiensional Euclidean
space.
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