Continuous isometric semigroups and reflexivity

by MAREK PTAK (Kraków)

Abstract. We consider the reflexivity of a WOT-closed algebra generated by continuous isometric semigroups parametrized by the semigroup of non-negative reals or the semigroup of finite sequences of non-negative reals. It is also proved that semigroups of continuous unilateral multi-parameter shifts are reflexive.

1. Introduction. The following standard notation is used. B(H) denotes the algebra of all (linear, bounded) operators on a Hilbert space H. I_H or I stands for the identity in H. Let S be a semigroup (we only consider the semigroup of non-negative reals \mathbb{R}_+^N , or the semigroup of finite sequences of non-negative reals \mathbb{R}_+^N) with unit 0. A mapping $T(\cdot)$: $S \to B(H)$ is called a semigroup (of operators) if T(0) = I and T(s+t) = T(s)T(t) for all $s, t \in S$. If S is a topological semigroup and $T(\cdot)$ is continuous in SOT(= Strong Operator Topology in B(H)), then the semigroup of operators is called strongly continuous.

Only closed subspaces of H are considered and by an algebra (of operators) on H we mean a subalgebra of B(H) with unit I_H . If $\mathcal{S} \subset B(H)$, then $\mathfrak{A}(\mathcal{S})$ stands for the WOT(= Weak Operator Topology)-closed algebra generated by \mathcal{S} and Lat \mathcal{S} stands for the lattice of all invariant subspaces for \mathcal{S} . An algebra \mathcal{A} is called reflexive if the algebra of all operators on H which leave invariant all subspaces from Lat \mathcal{A} is equal to \mathcal{A} . An operator $A \in B(H)$ (a semigroup of operators T(s), $s \in S$, respectively) is called reflexive if the algebra $\mathfrak{A}(A)$ ($\mathfrak{A}(T(s): s \in S)$, respectively) is reflexive.

Deddens [1] proved the reflexivity of an isometry. In [3] the reflexivity of pairs (two-element families) of isometries is considered. In the present paper the reflexivity of continuous isometric semigroups parametrized by \mathbf{R}_+ or \mathbf{R}_+^N is considered. It is also proved that semigroups of continuous unilateral shifts are reflexive [Theorem 10]. The idea of this proof refers to the proof of the main theorem in [5].

2. One-parameter isometric semigroups

THEOREM 1. If T(s), $s \in \mathbb{R}_+$, is a one-parameter strongly continuous semigroup of contractions and T is its cogenerator then $\mathfrak{A}(T) = \mathfrak{A}(T(s); s \in \mathbb{R}_+)$.

Proof. To prove \subset , let us recall [8, III, Theorem 8.1] that

(1)
$$T = \text{SOT-lim } \phi_s(T(s)) \quad \text{where } \phi_s(z) = \frac{z-1+s}{z-1-s}.$$

Since the Taylor series of ϕ_s , $s \in \mathbb{R}_+$, uniformly converges on the unit disc D, $\phi_s(T(s))$ is a SOT-limit of polynomials in T(s), for all $s \in \mathbb{R}_+$. Now, (1) implies that $T \in \mathfrak{A}(T(s))$: $s \in \mathbb{R}_+$.

To prove \Rightarrow , we recall [8, III, Theorem 8.1] that

(2)
$$T(s) = e_s(T) \quad \text{where } e_s(z) = \exp\left[s\frac{z+1}{z-1}\right].$$

[8, III, Theorem 2.3] implies that $e_s(T)$ is a SOT-limit of polynomials in T. Hence $T(s) \in \mathfrak{U}(T)$ for $s \in \mathbb{R}_+$.

Theorem 1 implies

THEOREM 2. A one-parameter strongly continuous semigroup of contractions is reflexive iff its cogenerator is reflexive.

Since the cogenerator of a one-parameter strongly continuous semigroup of isometries is an isometry [8, III, Theorem 9.2], we have

THEOREM 3. A one-parameter strongly continuous semigroup of isometries is reflexive.

The following example shows a non-reflexive one-parameter strongly continuous semigroup of contractions:

Example 4. Let

$$\alpha \ge 1$$
 and $T(s) = \exp(-\alpha s) \begin{bmatrix} 1 & s \\ 0 & 1 \end{bmatrix}$ for $s \in \mathbb{R}_+$.

It is easy to see that T(s), $s \in \mathbb{R}_+$, is a strongly continuous semigroup of contractions and its cogenerator is

$$T = \begin{bmatrix} \frac{\alpha - 1}{\alpha + 1} & \frac{-2}{(\alpha + 1)^2} \\ 0 & \frac{\alpha - 1}{\alpha + 1} \end{bmatrix},$$

and also

$$\mathfrak{A}(T) = \left\{ \begin{bmatrix} \lambda & \gamma \\ 0 & \lambda \end{bmatrix} : \lambda, \gamma \in \mathbb{C} \right\},\,$$

but this algebra is not reflexive [6, Example 9.26].

Now, let us note the following important

EXAMPLE 5. If $f \in L^2(0, \infty)$, then we define a one-parameter semigroup v(s), $s \in \mathbb{R}_+$, of isometries as

$$(v(s)f)(x) = f(x-s)$$
 for $s \in \mathbb{R}_+$, $x \in \mathbb{R}_+$

(we define f(x) = 0 if x < 0). It can be easily shown that $v(\cdot)$ is strongly continuous. Theorem 3 implies that v(s), $s \in \mathbb{R}_+$, is reflexive.

The following lemma is a consequence of Theorem 1:

LEMMA 6. If T(s), $s \in \mathbb{R}_+$, is a one-parameter strongly continuous semigroup of contractions, T is its cogenerator and $A \in B(H)$ then T(s)A = AT(s) for all $s \in \mathbb{R}_+$ iff TA = AT.

3. Multi-parameter semigroups of isometries. In the whole chapter, $S = \mathbb{R}_+^N$, $G = \mathbb{R}^N$, m is the Lebesgue measure on G (we also write m for any restriction of m to simplify the notation) and $p_i : \mathbb{R} \to \mathbb{R}^N$, $p_i(t) = (0, ..., t, ..., 0)$, with t in the ith position. If T(s), $s \in S$, is a semigroup then we set $T_i(t) = T(p_i(t))$ for $t \in \mathbb{R}_+$ and i = 1, ..., N.

THEOREM 7. If T(s), $s \in S$, is a strongly continuous semigroup of contractions and T_i , i = 1, ..., N, is the cogenerator for the semigroup $T_i(\cdot)$, then $\mathfrak{U}(T(s): s \in S) = \mathfrak{U}(T_i: i = 1, ..., N)$.

Proof. Note that from Theorem 1 we have

$$\mathfrak{A}(T(s): s \in S) = \mathfrak{A}(T_i(\cdot): i = 1, ..., N) = \mathfrak{A}(\mathfrak{A}(T_i(t): t \in \mathbb{R}_+): i = 1, ..., N)$$
$$= \mathfrak{A}(\mathfrak{A}(T_i: i = 1, ..., N)) = \mathfrak{A}(T_i: i = 1, ..., N). \blacksquare$$

Let us recall that if A, $B \in B(H)$ then A, B are doubly commuting iff A, B commute and A, B^* commute.

THEOREM 8. If T(s), $s \in S$, is a strongly continuous semigroup of isometries such that

(3)
$$T_i(t_1)T_j^*(t_2) = T_j^*(t_2)T_i(t_1)$$
 for $t_1, t_2 \in \mathbb{R}_+, i \neq j$,

then $\mathfrak{A}(T(s): s \in S)$ is reflexive.

Proof. Let $i \neq j$. Then, from (3), Lemma 6 implies that $T_i T_j^*(t_2) = T_j^*(t_2) T_i$ for $t_2 \in \mathbb{R}_+$, where T_i denotes the cogenerator of $T_i(\cdot)$, i = 1, ..., N. Thus $T_j(t_2) T_i^* = T_i^* T_j(t_2)$ for $t_2 \in \mathbb{R}_+$ and now, also from Lemma 6, $T_i^* T_j = T_j T_i^*$. In the same way, we can show that $T_i T_j = T_j T_i$ for $i \neq j$. Hence, $\{T_i, i = 1, ..., N\}$ is a family of doubly commuting operators. [8, III, Theorem 9.2] shows that each T_i is an isometry. Note that [3, Theorem 1] can be generalized by induction to any finite sequence of doubly commuting isometries, thus $\mathfrak{A}(T_i: i = 1, ..., N)$ is reflexive, so $\mathfrak{A}(T(s): s \in S)$ is also reflexive (Theorem 7).

Let us generalize Example 5 to the N-dimensional case.

Example 9. Consider the space $L^2(S, m)$, with a semigroup of isometries

$$(T^0(s)f)(\phi) = f(\phi - s)$$
 for $f \in L^2(S, m), s \in S, \phi \in S$

(we assume that $f(\phi) = 0$ if $\phi \notin S$). It is easy to see that the semigroup $T^0(s)$ is strongly continuous. Now we show that $T^0(s)$, $s \in S$, fulfills assumption (3). Note that $(T^0(s)^*f)(\phi) = f(\phi + s)$ for ϕ , $s \in S$. If $i \neq j$, t_1 , $t_2 \ge 0$, then we have for $f \in L^2(S, m)$ and $\phi \in S$

$$\begin{split} \big(T_i^0(t_1)T_j^0(t_2)^*f\big)(\phi) &= \big(T^0\big(p_i(t_1)\big)T^0\big(p_j(t_2)\big)^*f\big)(\phi) \\ &= \big(T^0\big(p_j(t_2)\big)^*f\big)\big(\phi - p_i(t_1)\big) = f\big(\phi - p_i(t_1) + p_j(t_2)\big) \\ &= \big(T^0\big(p_i(t_1)\big)f\big)\big(\phi + p_j(t_2)\big) = \big(T_j^0(t_2)^*T_i^0(t_1)f\big)(\phi). \end{split}$$

Thus $T_i^0(t_1)$, $T_j^0(t_2)$ fulfill (3). Let T_i^0 denote the cogenerator of the semigroup $T_i^0(t) = T^0(p_i(t))$, i = 1, ..., N. Now, in the same way as in Theorem 8, we can prove that T_i^0 , T_j^0 , $i \neq j$, are doubly commuting. Theorem 8 also shows that the algebra $\mathfrak{A}(T^0(s): s \in S) = \mathfrak{A}(T_i^0: i = 1, ..., N)$ is reflexive.

In view of Examples 5 and 9 we can ask if the Theorem from [5] concerning the discrete situation can be generalized to the continuous case. Let us follow the terminology of [5]. A set $X \subset G$ is called a diagram if $g+s\in X$ for $g\in X$, $s\in S$. $\mathscr X$ denotes the set of all diagrams. For $g\in G$ we define $E_g=\{X\in\mathscr X\colon g\in X\}$ and $\mathscr B$ denotes the σ -algebra generated by all sets E_g , $g\in G$. Consider a positive finite measure μ on $(\mathscr X,\mathscr B)$ and the space K of all measurable functions $f\colon G\times\mathscr X\to H$ such that $\int ||f(g,X)||^2 dm\otimes\mu<\infty$, f(g,X)=0 $m\otimes\mu$ -a.e. on $\{(g,X)\colon X\notin E_g\}$ (we identify functions equal $m\otimes\mu$ -a.e.). Then K is a Hilbert space with inner product $(f_1,f_2)=\int (f_1(g,X),f_2(g,X))_H dm\otimes\mu$ for $f_1,f_2\in K$.

Now consider the following semigroup T(s), $s \in S$, of operators on K:

$$(T(s)f)(g, X) = f(g-s, X)$$
 for $f \in K$.

The space K is invariant for all T(s), $s \in S$, since if we take $f \in K$ and $g \notin X$ then $(g-s)+s \notin X$ and $g-s \notin X$, because X is a diagram. Thus (T(s)f)(g,X) = f(g-s,X) = 0 $m \otimes \mu$ -a.e.

THEOREM 10. The algebra $\mathfrak{U}(T(s); s \in S)$ is reflexive.

Because of Theorem 7, to prove the above theorem it is convenient to use the cogenerators T_i of the semigroups $T_i(\cdot) = T(p_i(\cdot))$, i = 1, ..., N. However, we cannot use the Theorem of [5], since the spaces K considered here and in [5] are different, but we try to adapt the idea to our situation.

If $g \in G$, then we write $S_g = g + S$ and $L_g = L^2(S_g \times E_g, m \otimes \mu|_{E_g}, H)$. The elements of L_g can be considered as functions defined on the whole $G \times \mathcal{X}$ if we define them to be 0 off $S_g \times E_g$. Then it is easy to see that L_g is a subspace of K.

Remark 11. $K = \overline{\operatorname{span}\{L_g: g \in G\}}$.

Proof. Let $f \in K$ and $f \perp \operatorname{span}\{L_g \colon g \in G\}$. We denote by χ_g the characteristic function of the set $S_g \times E_g$. Let $g \in G$. Then $\chi_g f \in L_g$, thus $0 = (f, \chi_g f) = \int ||f|_{S_g \times E_g}||^2 d\mathbf{m} \otimes \mu$. Hence $f|_{S_g \times E_g} = 0$ $\mathbf{m} \otimes \mu$ -a.e. for all $g \in G$. It is easy to see that $\{(g, X) \in G \times \mathcal{X} \colon X \in E_g\} \subset \bigcup_{g \in G} S_g \times E_g$. So f(g, X) = 0 $\mathbf{m} \otimes \mu$ -a.e. on $\{(g, X) \in G \times \mathcal{X} \colon X \in E_g\}$. Since $f \in K$, f(g, X) = 0 $\mathbf{m} \otimes \mu$ -a.e. on $\{(g, X) \in G \times \mathcal{X} \colon X \notin E_g\}$. Hence f = 0 $\mathbf{m} \otimes \mu$ -a.e.

LEMMA 12. The subspace L_a is invariant for T(s), for all $s \in S$, $g \in G$.

Proof. Let $f \in L_g$. Then f(t, X) = 0 if $(t, X) \notin S_g \times E_g$. We should show that, for all s, (T(s)f)(t, X) = 0 whenever $(t, X) \notin S_g \times E_g$. If $X \notin E_g$ then (T(s)f)(t, X) = f(t-s, X) = 0. If $t \notin S_g$ then $t-s \notin S_g$ and (T(s)f)(t, X) = f(t-s, X) = 0.

Let $g \in G$. Then the subspace L_g is unitarily equivalent to $L^2(S \times E_g, m \otimes \mu|_{E_g}, H)$ (which is isomorphic to $L^2(S, m) \otimes L^2(E_g, \mu|_{E_g}, H)$ by a natural isomorphism), and let U_g define this unitary equivalence, i.e.

$$U_a$$
: $L^2(S_a \times E_a, m \otimes \mu|_{E_a}, H) \rightarrow L^2(S \times E_a, m \otimes \mu|_{E_a}, H)$,

$$(U_{\mathfrak{g}}f)(s,\,X)=f(s+g,\,X)\qquad\text{for }f\in L^2(S_{\mathfrak{g}}\times E_{\mathfrak{g}},\,\boldsymbol{m}\otimes\mu|_{E_{\mathfrak{g}}},\,\boldsymbol{H}),\,s\in S,\,X\in\mathscr{X}.$$

Then for s, $t \in S$, $X \in \mathcal{X}$ and $f \in L^2(S_g \times E_g, m \otimes \mu|_{E_g}, H)$ we have

$$\begin{split} \big(U_{g}T(t)f\big)(s,\,X) &= \big(T(t)f\big)(s+g,\,X) = f(s-t+g,\,X) = (U_{g}f)(s-t,\,X) \\ &= \big(\big(T^{0}(t)\otimes I_{g}\big)U_{g}f\big)(s,\,X) \quad \text{where } I_{g} = I|_{L^{2}(E_{g},\mu|E_{g},H)}. \end{split}$$

Hence

(4)
$$U_g T(t) U_g^* = T^0(t) \otimes I_g \quad \text{for } t \in S, g \in G.$$

LEMMA 13. If $g \leq h$, $g, h \in G$, then $U_h T(h-g)|_{L_g} = U_g$.

Proof. Let $f \in L_g$, $\alpha \in S$, $X \in E_g$. Then

$$(U_h T(h-g)f)(\alpha, X) = (T(h-g)f)(\alpha+h, X) = f(\alpha+h-h+g)$$
$$= f(\alpha+g, X) = (U_a f)(\alpha, X). \blacksquare$$

LEMMA 14. If $g \leq h$, $g, h \in G$, then

$$U_g U_h^*|_{L^2(S,m) \otimes L^2(E_g,\mu|_{E_g},H)} = T^0(h-g) \otimes I_g.$$

Proof. Let $f \in L^2(S \times E_a, m \otimes \mu|_{E_a}, H)$ and $s \in S, X \in \mathcal{X}$. Then

$$(U_a U_h^* f)(s, X) = (U_h^* f)(s+g, X)$$

$$= f(s+g-h, X) = (T^0(h-g) \otimes I_a)(s, X). \blacksquare$$

LEMMA 15. If Lat $\{T(s): s \in S\} \subset \text{Lat } A \text{ then } AT(s) = T(s)A \text{ for } s \in S.$

Proof. Let $g \in G$. Then, by Lemma 12, $L_g \in \text{Lat}\{T(s): s \in S\} \subset \text{Lat } A$, thus $\text{Lat}\{T(s)|_{L_g}: s \in S\} \subset \text{Lat } A|_{L_g}$. Now, (4) implies $\text{Lat}\{T^0(s) \otimes I_g: s \in S\}$ = $\text{Lat}\{U_g T^0(s) U_g^*: s \in S\} \subset \text{Lat } U_g A|_{L_g} U_g^*$. Since the algebra $\mathfrak{A}(T^0(s): s \in S)$ is reflexive (Example 9), the algebra $\mathfrak{A}(T^0(s) \otimes I_g: s \in S)$ is also reflexive [6, Theorem 9.18, Corollary 9.19]. Hence $U_g A|_{L_g} U_g^* \in \mathfrak{A}(T^0(s) \otimes I_g: s \in S)$ and so $A|_{L_g} \in \mathfrak{A}(T(s)|_{L_g}: s \in S)$. Thus $A|_{L_g} T(s)|_{L_g} = T(s)|_{L_g} A|_{L_g}$. Remark 11 finishes the proof.

Now for $g \in G$ consider the subspace $M_g = \{f \in K : f(h, X) = 0 \ m \otimes \mu$ -a.e. on $G \times (\mathcal{X} - E_g)\}$. A sequence $\{g_n\} \subset G$ is called *strongly increasing* if and only if $g_n^{(i)} < g_{n+1}^{(i)}$, i = 1, ..., N, where the $g_k^{(i)}$ are the coordinates of g_k .

LEMMA 16. If $g \le h$ then $M_g \subset M_h$. If a sequence $\{g_n\} \subset G$ is strongly increasing then $\bigcup_{n \in \mathbb{N}} M_{g_n} = K$.

Proof. The first assertion is an immediate consequence of the inclusion $E_g \subset E_h$. To prove the other one, let $f \in K$ and $f \perp M_{g_n}$ for all n. Since g_n is strongly increasing, for any $g \in G$ there is g_n such that $g \leq g_n$. Then $L_g \subset M_g \subset M_{g_n}$. Remark 11 implies that $K \subset \bigcup_{g \in G} L_g \subset \bigcup_{n \in \mathbb{N}} M_{g_n}$.

Proof of the Theorem. Let $g \in G$. Then, from Lemma 12, $L_g \in \text{Lat}\{T(s): s \in S\} \subset \text{Lat } A$, thus $\text{Lat}\{T(s)|_{L_g}: s \in S\} \subset \text{Lat } A|_{L_g}$. Now, (4) implies

(5) Lat $\{T^0(s) \otimes I_g : s \in S\} = \text{Lat}\{U_g T^0(s) U_g^* : s \in S\} \subset \text{Lat } U_g A|_{L_g} U_g^*.$

The algebra $\mathfrak{A}(T^0(s): s \in S) = \mathfrak{A}(T_i^0: i = 1, ..., N)$ is reflexive but we also need the following condition:

(6) For any $A \in \mathfrak{A}(T^0(s): s \in S)$ there is $c \ge 0$ and a sequence of polynomials q_m such that $||q_m(T^0_1, \ldots, T^0_N)|| \le c$ and $q_m(T^0_1, \ldots, T^0_N)$ WOT-converges to A as $m \to \infty$.

The semigroups $T_i^0(\cdot)$, $i=1,\ldots,N$, are completely non-unitary [8, III, § 9.3], so the T_i^0 , $i=1,\ldots,N$, are shifts. Hence, the algebra $\mathfrak{Al}(T_i^0:i=1,\ldots,N)$ is unitarily equivalent to the WOT-closed algebra generated by the multiplication operators on the Hardy space $H^2(\Gamma^N)$ [7, Theorem 1]. Thus (6) is a consequence of the proof of the main theorem in [4].

(5) and (6) imply that there is C > 0 and a sequence of operators $\sigma_n^u \otimes I_u$ WOT-converging to $U_q A \mid_{L_u} U_g^*$, where σ_n^u is a polynomial in the operators T_i^u , i = 1, ..., N, and $||\sigma_n^u \otimes I_g|| < C$. The above convergence also shows that $U_g A \mid_{L_u} U_g^* = A_g \otimes I_g$, where A_g is chosen appropriately.

Remark 11 implies that there is g_0 such that $L_{g_0} \neq \{0\}$ and we set $\sigma_n = \sigma_n^{g_0}$. The sequence $\sigma_n \otimes I_{g_0}$ WOT-converges to $U_{g_0}A|_{L_{g_0}}U_{g_0}^* = A_{g_0}\otimes I_{g_0}$, thus the sequence $U_{g_0}^*(\sigma_n \otimes I_{g_0})U_{g_0}$ WOT-converges to $A|_{L_{g_0}}$. Let $h \geqslant g_0$. Then, like in [5] (p. 413) we can prove that $\sigma_n \otimes I_h$ WOT-converges to $A_h \otimes I_h = U_h A|_{L_{h\psi}}U_h^*$ on $L^2(s, m) \otimes L^2(E_h, \mu|_{E_h}, H)$.

Let $\{g_m\} \subset G$ be a strongly increasing sequence with first element g_0 . For any m let us define a sequence of operators

(7)
$$\eta_n^m = U_{g_m}(\sigma_n \otimes I_{g_m})U_{g_m}^*.$$

Hence, η_n^m WOT-converges to $A|_{L_{g_m}}(n\to\infty)$ and $\|\eta_n^m\|\| \le C$. Let us extend η_n^m to the whole M_{g_m} in the following way. Set $M_{g_m}^l = M_{g_m} \cap L^2(S_{-l} \times E_{g_m}, m \otimes \mu|_{E_{g_m}}, H)$ for all non-negative integers l and l = (l, ..., l). It is easy to see that $M_{g_m} = \overline{\bigcup_l M_{g_m}^l}$. We define

(8)
$$\eta_n^m f = T(l+g_m)^* \eta_n^m T(l+g_m) f \quad \text{for } f \in M_{g_m}^l.$$

Since $\alpha \in S_{gm}$ if and only if $\alpha - l - g_m \in S_{-l}$, thus $f \in M_{gm}^l$ implies $T(l + g_m) f \in L_{gm}$, hence the definition (8) is correct. The operators σ_n are polynomials in the cogenerators T_i^0 , $i = 1, \ldots, N$, thus the η_n^m are polynomials in the cogenerators $T_i|_{L_{gm}}$ of the semigroups $T_i(\cdot)|_{L_{gm}}$, by (7). Hence, η_n^m commutes with T(s) on L_{gm} . Therefore (8) gives a well-defined extension (independent of l) of η_n^m to $\bigcup_l M_{gm}^l$. Also $||\eta_n^m|| \leq C$ on L_{gm} , and so, from (8), $||\eta_n^m|| \leq C$ on M_{gm}^l for all l. We have thus extended η_n^m to the whole M_{gm} with $||\eta_n^m|| \leq C$. By (8), the extended η_n^m are polynomials in the cogenerators of the semigroups $T_i(\cdot)|_{M_{gm}}$, $i = 1, \ldots, N$.

The following lemma, with the proof like that of Lemma 10 in [5], is needed:

LEMMA 17. If
$$m \leq k$$
, $n \in \mathbb{N}$, then $\eta_n^m = \eta_n^k|_{M_{am}}$.

Lemma 17 implies that we can define the operators $\bigcup_m \eta_n^m$ on $\bigcup_m M_{g_m}$ and $\|\bigcup_m \eta_n^m\| \le C$. Thus, there is a sequence of operators $\beta_n \stackrel{\text{df}}{=} \bigcup_m \eta_n^m$ on $K = \bigcup_m M_{g_m}$ (Lemma 16) and $\|\beta_n\| \le C$. Lemma 17 and the properties of closure imply that the β_n are polynomials in the cogenerators of the semigroups $T_i(\cdot)$, since the η_n^m have the analogous property. Using commutativity of A and T(s), $s \in S$ (Lemma 15) we can prove in the same way as in [5] (p. 411) that β_n WOT-converges to A. Thus $A \in \mathfrak{A}(T_i: i = 1, ..., N) = \mathfrak{A}(T(s): s \in S)$.

We note an interesting

EXAMPLE 18. Consider $L^2(\Omega, m)$, where $\Omega = \{(x, y) \in \mathbb{R}^2 : x \ge 0 \text{ or } y \ge 0\}$ and m is the Lebesgue measure on Ω , and the isometric semigroup (T(s)f)(g) = f(g-s) for $s \in S$, $f \in L^2(\Omega, m)$, $g \in \Omega$ (we define f(g) = 0 if $g \notin \Omega$). If we take the measure $\mu = \delta_{\Omega}$ (the point mass at Ω) then Theorem 10 shows that the above semigroup is reflexive.

Example 18 shows that a natural unilateral translation (for the definition see [2]) on the semigroup of finite sequences of non-negative reals is reflexive. But a modified unilateral translation is unitarily equivalent to a natural unilateral translation (see [2]), hence we have

COROLLARY 19. A modified unilateral translation on the semigroup of finite sequences of non-negative reals is reflexive.

References

- [1] J. A. Deddens, Every isometry is reflexive, Proc. Amer. Math. Soc. 28 (1971), 509-511.
- [2] D. Gaspar and N. Suciu, On the structure of isometric semigroups, in: Oper. Theory: Adv. Appl. 14, Birkhäuser, Basel 1984, 125-139.
- [3] M. Ptak, On the reflexivity of pairs of isometries and of tensor products of some operator algebras, Studia Math. 83 (1986), 47-55.
- [4] -, Reflexivity of multiplication operators on certain domains in C^N, Bull. Polish Acad. Sci. Math. 37 (1989), 217-220.
- [5] -, Reflexivity of pairs of shifts, Proc. Amer. Math. Soc. 109 (1990), 409-415.
- [6] H. Radjavi and P. Rosenthal, Invariant Subspaces, Springer, New York 1973.
- [7] M. Słociński, On the Wold-type decomposition of a pair of commuting isometries, Ann. Polon. Math. 37 (1980), 255–262.
- [8] B. Sz.-Nagy and C. Foias, Harmonic Analysis of Operators on Hilbert Space, North-Holland, Amsterdam 1974.

INSTITUTE OF MATHEMATICS, UNIVERSITY OF AGRICULTURE 18 Stycznia 6, 30-045 Kraków, Poland

Reçu par la Rédaction le 15.07.1989 Révisé le 08.05.1990
