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Continuous isometric semigroups and reflexivity

by MAREk PTaK (Krakow)

Abstract. We consider the reflexivity of a WOT-closed algebra generated by continuous
isometric scmigroups paramectrized by the semigroup of non-negative reals or the semigroup of
finite scquences of non-negative reals. It is also proved that semigroups of continuous unilateral
multi-purameter shifts are reflexive.

1. Introduction. The following standard notation is used. B(H) denotes the
algebra of all (linear, bounded) operators on a Hilbert space H. I, or I stands
for the identity in H. Let S be a semigroup (we only consider the semigroup of
non-negative reals R, , or the semigroup of finite sequences of non-negative
reals RY) with unit 0. A mapping T(‘): S— B(H) is called a semigroup (of
operators)if T(0)=1Iand T(s+¢t) = T(s)T(¢)forall s, teS.If S is a topological
semigroup and T(') is continuous in SOT(= Strong Operator Topology in
B(H)), then the semigroup of operators is called strongly continuous.

Only closed subspaces of H are considered and by an algebra (of
operators) on H we mean a subalgebra of B(H) with unit I,. If ¥ < B(H), then
A(¥) stands for the WOT(= Weak Operator Topology)-closed algebra
generated by & and Lat.% stands for the lattice of all invariant subspaces for
&. An algebra & is called reflexive if the algebra of all operators on H which
leave invariant all subspaces from Lat .« is equal to «/. An operator A€ B(H)
(a semigroup of operators T(s), se€S, respectively) is called reflexive if the
algebra A(A) (A(T(s): seS), respectively) is reflexive.

Deddens [1] proved the reflexivity of an isometry. [n [3] the reflexivity of
pairs (two-element [amilies) of isometries is considered. In the present paper the
reflexivity of continuous isometric semigroups parametrized by R, or RY is
considered. It is also proved that semigroups ol continuous unilateral shifts are
reflexive [Theorem 10]. The idea of this proof refers to the proof of the main
theorem in [5].

2. One-parameter isometric semigroups

THeorem 1. If T(s), seR,, is a one-parameter strongly continuous
semigroup of contractions and T is its cogenerator then W(T) = (T (s): se R.)
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Proof. To prove —, let us recall [8, III, Theorem 8.1] that

z—1+s
z—1—s

.

(1) T =SOT-lim ¢,(T())  where 9,(z) =

Since the Taylor series of ¢,, seR ., uniformly converges on the unit disc D,
¢,(T(s) is a SOT-limit of polynomials in T'(s), for all seR, . Now, (1) implies
that TeUA(T(s): seR,).

To prove >, we recall [8, III, Theorem 8.1] that

2 T(s) =e,(T) where e,(2) =exp[s i+—1j|

z—1

(8, ITI, Theorem 2.3] implies that e,(T) is a SOT-limit of polynomials in T.
Hence T(s)eU(T) for seR,. =

Theorem 1 implies

THEOREM 2. A one-parameter strongly continuous semigroup of contractions
is reflexive iff its cogenerator is reflexive.

Since the cogenerator of a one-parameter strongly continuous semigroup
of isometries is an isometry [8, III, Theorem 9.2], we have

THEOREM 3. A one-parameter strongly continuous semigroup of isometries is
reflexive.

The following example shows a non-reflexive one-parameter strongly
continuous semigroup of contractions:

ExaMPLE 4. Let
«=21 and T(s) =exp(—as)|:(l) i] for seR.,.

It is easy to see that T'(s), seR,, is a strongly continuous semigroup ol
contractions and its cogenerator is

a—1 -2
T a+1 (a+1)> ,
a—1
0 i
a+1

and also

A(T) = {[g ’:1] , yeC},

but this algebra is not reflexive [6, Example 9.26].

Now, let us note the following important
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ExameLE 5. If f € I2(0, o0), then we define a one-parameter semigroup uv(s),
seR,, of isometries as

(v f)(x) =f(x—s) for seR,, xeR,

(we define f(x) =0 if x <0). It can be easily shown that v(-) is strongly
continuous. Theorem 3 implies that v(s), seR ., is reflexive.

The following lemma is a consequence of Theorem 1:

LEMMA 6. If T(s), se R, is a one-parameter strongly continuous semigroup
of contractions, T is its cogenerator and Ae B(H) then T(s)A = AT(s) for all
seR, iff TA = AT.

3. Multi-parameter semigroups of isometries. In the whole chapter,
S=RY, G=R", m is the Lebesgue measure on G (we also write m
for any restriction of m to simplify the notation) and p,: R—R", p,(t) = (0, ...,
t, ..., 0), with ¢ in the ith position. If T(s), s€S$, is a semigroup then we set
T,(t) = T(p,(?)) for teR, and i=1,...,, N.

THEOREM 7. If T(s), s€ S, is a strongly continuous semigroup of contractions
and T, i=1,...,N, is the cogenerator for the semigroup T(-), then
A(T(s): seS)=U(T: i=1,..., N).

Proof Note that {rom Theorem 1 we have
A(T(s): s€S)=W(T(:): i=1,..., N)=W(A(T,(®): teR,): i=1,...,N)
=UYWT: i=1,..,N)=UT:i=1,..,N). =

Let us recall that if 4, Be B(H) then A, B are doubly commuting iff 4,
B commute and 4, B* commute.

THEOREM 8. If T(s), s€ S, is a strongly continuous semigroup of isometries
such that

3 Ti(t)TI(t,) = TrHe) Ti(ey)  for ¢y, R, D #],
then N(T(s): seS) is reflexive.

Proofl- Let i%#j. Then, from (3), Lemma 6 implies that
T,T}(t;) = TY(t)T, for t,eR,, where T; denotes the cogenerator of Ti(:),
i=1,..., N. Thus T(t,) T} = T} T)(t,) for t,eR, and now, also from Lemma
6, T} T,= T,T¥. In the same way, we can show that T,T,= T,T; for i #}j.
Hence, {T;,i=1, ..., N} is a family of doubly commuting operators. [8, II,
Theorem 9.2] shows that each 7, is an isometry. Note that [3, Theorem 1] can
be generalized by induction to any finite sequence of doubly commuting
isometries, thus U(T;: i=1,...,N) is reflexive, so ‘ZI(T(S): seS) is also
reflexive (Theorem 7). m
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Let us generalize Example 5 to the N-dimensional case.
ExaMpLE 9. Consider the space I*(S, m), with a semigroup of isometries
(T°G)S)@) =Sf(p—s) for feL¥S, m), s€S, ¢S

(we assume that f(¢) = 0 if ¢ ¢S). It is easy to see that the semigroup T(s) is
strongly continuous. Now we show that T°(s), se S, fulfills assumption (3).
Note that (T°(s)*f)(¢) = f(p+5) for ¢, seS. If i #j, t;, t, > 0, then we have
for feI?(S, m) and ¢€eS

(TP(t) T7 (e)* ) (@)

(TO(PI(H) TO Pj(tz) ‘f)(‘ﬁ)
(T P;(tz *f)‘f’ —pdty) = (@ —pilt) + pylt;))
(TO(pi(t,)) £)(@ +py(t2)) = (T7(E)* T2 (1)) £)(¢h).

Thus T{(t,), T9(t,) fulfill (3). Let T{ denote the cogenerator of the semigroup
T2(t) = T°(p,(¢), i =1, ..., N. Now, in the same way as in Theorem 8, we can
prove that T?, T?, i # j, are doubly commuting. Theorem 8 also shows that
the algebra A(T°(s): seS) = W(TP: i=1,..., N) is reflexive.

In view of Examples 5 and 9 we can ask if the Theorem from [5]
concerning the discrete situation can be generalized to the continuous case.
Let us follow the terminology of [5]. A set X < G is called a diagram if g+ se X
for geX, s€S. & denotes the set of all diagrams. For ge G we define
E,={XeZ: geX} and # denotes the o-algebra generated by all sets
E geG. Consider a positive finite measure pu on (2, #) and the space K
of all measurable functions f: G x Z —H such that {||f(g, X)I?’dm® u < o,
f@,.X)=0 m®p-ae. on {(g, X): X¢E,} (we identily functions equal
mQ u- ae) Then K is a Hilbert space with inner product (f,,/f,)

_J(fl g’ fz(g’ ) dm@l-" fOl‘ fl’szK'
Now consider the following semigroup T(s), seS, of operators on K:

(T©) )@, X) = fg—s, X) for feK.

The space K is invariant for all T'(s), s€ S, since if we take fe K and g¢ X then
(g—s)+s¢X and g—s¢ X, because X is a diagram. Thus (T(s)f)(g, X)
=f(g—s, X)=0 m®u-ae.

TreoreM 10. The algebra W(T(s): s€S) is reflexive.

Because of Theorem 7, to prove the above theorem it is convenient to use
the cogenerators T, of the semigroups T)(-) = T(p,(‘)). i = 1, ..., N. However,
we cannot use the Theorem of [5], since the spaces K considered here and in
[5] are different, but we try to adapt the idea to our situation.

If ge G, then we write S, =g+S and L, = (S, x E,, m® u|g,, H). The
elements of L, can be considered as functions defined on the whole G x 2 il we
define them to be 0 off §, x E,. Then it is easy to see that L, is a subspace of K.
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Remark 11. K =span{L,: geG}.

Proof Let feK and f Lspan{L,: geG}. We denote by y, the charac-
teristic function of the set S, x E,. Let ge G. Then y, f € L,, thus 0 = (f, x,f)
= [[Ifs,xg,lI* dm®p. HencefIS, g, = 0 m@® p-a.e. for allgeG It is easy to
see that {(g, X)eGxZ: XeE} c U,,,GS xE;,. So f(g,X)=0 m@®pu-ae.
on {(g, X)eGxZ: XeE,}. Since feK, f(g,X) 0 m®u-ae. on {(g, X)
eGx%¥: X¢E;}. Hence /=0 m®u-ae.

LeMMA 12. The subspace L, is invariant for T(s), for all seS, geG.

Proof Let feL, Then f(t,X)=0 if (¢, X)¢S,xE,, We should
show that, for all 5, (T(s)f)(t, X) =0 whenever (¢, X)¢S,xE,. If X¢E,
then (T(s)/)(t, X) =f(t—s, X)=0.1If t¢S, then t—s¢8, and (T(s)f)(t, X)
=f(t—s, X)=0.

Let ge G. Then the subspace L, is unitarily equivalent to Lz(SxE
m® g, H) (which is isomorphic to LZ(S m)® [*(E,, ple, H) by a natural
lsomorphlsm), and let U, define this unitary equivalence, ie.

Uy B(S,xE,, m@ulg, H» (S xE, m@pl|s,, H),
U, N6 X)=f(s+g, X) for feZ(S,xE,, m® ul|g, H),seS, XeX.
Then for s, teS, XeZ and fel*(S,xE,, m@u|g,, H) we have
(U, TO)(s, X) = (T0)f)(s+9, X) =fs=t+g, X) = (U, f)s—1, X)
=((T°O® 1)U, f)s, X) where I, =I|12, e,
Hence
4) UT@HUY =T()®1, for teS, gel.
Lemma 13. If g< h, g, heG, then U,T(h—g)|,,=U
Proof Let feL,aeS, XeE, Then
(UsT(h—g)f)@, X) = (T(h—g) f)(a+h, X) = f (@-+h—h+g)
=f(a+g, X)=(U,MNa, X). =
LemMA 14. If g < h, g, heG, then
U, Ul L2s.m) L E i, 1) = T°(h—g)® I,
Proof. Let fe}(SxE, m@u|g,, H) and seS, XeZ. Then
(U, Uk f)s, X) = (Uk [)s+g, X)
=f(s+g—h, X)=(T°h~g)®I)(s, X). m
LemMA 15, If Lat{T(s): seS} = LatA then AT(s) = T(s)A for s€S.
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Proof. Let ge G. Then, by Lemma 12, L e Lat{T'(s): s€S} < Lat A, thus
Lat{T(s)|,,: seS} < LatA|,,. Now, (4) implies Lat{T°(5)®@I,: seS)
= Lat{U,T°(s)U}: seS} < LatU,A|,,U}. Since the algebra A(T(s): s€S5)
is reflexive (Example 9), the algebra 91(T°(s)®10: seS) is also reflexive [6,
Theorem 9.18, Corollary 9.19]. Hence U, A|,, Ut e W(T°(s)®I,: s€S) and so
Al €W(T(S)e,: s€S). Thus Al T@)y, = T(s)r, Al Remark 11 finishes
the proof. m

Now for ge G consider the subspace M, = {feK: f(h, X) =0 m® p-ae.
on G x (% — E,)}. A sequence {g,} < G is called strongly increasing if and only if
gV <g®,, i=1,...,N, where the g’ are the coordinates of g,.

LEMMA 16. If g < h then M, c M,. If a sequence {g,} = G is stronyly

increasing then | ).enM,, =K.

Proof. The first assertion is an immediate consequence of the inclusion
E,c E,. To prove the other one, let f€K and f LM, for all n. Since g, is
strongly increasing, for any ge G there is g, such that g <g,. Then L, = M,

< M, . Remark 11 implies that K < | Jyec L, © Unen M,,. =

Proof of the Theorem. Let geG. Then, from Lemma 12,
L,eLat{T(s): seS} < LatA, thus Lat{T(s)|,: s€S} < Lat4|,,. Now, (4)
implies

(5) Lat{T°(9)®I,: seS} = Lat{U, T (s)U}: seS} < LatU_ A|, U}.

The algebra U(T(s): seS) = W(TP: i =1, ..., N)is reflexive but we also need
the following condition:

(6) For any AeU(T°(s): seS) there is ¢ > 0 and a sequence of polynomials
qm Such that ||g,(T%, ..., T < ¢ and ¢, (T?,  T%) WOT-converges
to A as m— 0.

The semigroups TY(:),i=1, ..., N, are completely non-unitary [8, II1, §9.3],
so the T?, i =1, ..., N, are shifts, Hence, the algebra Q(T: i=1,..., N) is
unitarily equivalent to the WOT-closed algebra generated by the multi-
plication operalors on the Hardy space H2(I'™) [7, Theorem !]. Thus (6) is
a consequence of the proof of the main theorem in [4].

(5) and (6) imply that there is C > O and a sequence of operators a4 ® 1,
WOT-converging to U, A |, UF, where ¢ is a polynomial in the operators T},
i=1,..,N, and |lo}®I || < C. The above convergence also shows that
U,AlL, Uy = A,®1,, where A, is chosen appropriately.

Remark 11 implies that there is g, such that L, # {0} and we set o, = a?.
The sequence ¢,®1,, WOT-converges to U, Al U = A,®I,, thus the
sequence Ug (o, ® I, )U,  WOT-converges to 4|, . Let h 2 g,. Then, like in
(5] (p. 413) we can prove that 0,® I, WOT-converges lo A, ® 1, = U,A|,,, Uk
on (s, m)® I(E,, ulg,, H).
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Let {g,,} = G be a strongly increasing sequence with first element go- For
any m let us define a sequence of operators

™) M = U, (6,®1, )Up.

Hence, ny WOT-converges to 4|, (n— o) and |In7'|| < C. Let us extend 5
to the whole M, in the following way. Set M, =M, mL(S_,xE

m ® 4l H) for all a11 non-negative integers / and I = (l I) Tt is easy to sce
that M, = ()M} . We define
(8) meS=TA+g)* ' T(U+g,)f for feM,,.

Since ae S, ifand only if x—I—g,€eS_;, thus fe M, implies T(l+g,,,)feL
hence the dcﬁnmon (8).is correct. The operators ¢, are polynomials in the
cogenerators TP, i =1,..., N, thus the ™ are polynomlals in the cogenerators
Ti|.,,, of the semigroups T( )L,,., by (7). Hence, ;' commutes with T'(s) on L
Therefore (8) gives a well-defined extension (independent of I) of ny to | J, Mf
Also [ln7ll < C on L, , and so, from (8), |inf|| < C on M} _for all I. We have
thus extended 57 to the whole M, with [|7]| < C. By (8), the extended Ny are
polynomials in the cogcnerators "of the semigroups T(*)|n,,, i=1,..., N.

The following lemma, with the proof like that of Lemma 10 in [5], is
needed:

Lemma 17. If m <k, neN, then n -ﬂulu,...

Lemma 17 implies that we can define the operators | 1y on UnmM,

and ||U,,,n,, || C. Thus, there is a sequence of operators ﬁ,, U,,. M on
K=|{),M, (Lemma 16) and ||f,|| < C. Lemma 17 and the properties of
closure imply that the 8, are polynomials in the cogenerators of the semigroups
T,(+), since the #7 have the analogous property. Using commutativity of 4 and
T(s), seS (Lemma 15) we can prove in the same way as in [5] (p. 411) that f,
WOT-converges to A. Thus AeW(T;: i=1,..., N)=A(T(s): s€S). m

We note an interesting

ExampLE 18. Consider I?(Q2, m), where Q = {(x, y)eR?*: x 2 0 or y > 0}
and m is the Lebesgue measure on Q, and the isometric semigroup (T) /) g)
=f(g—s)forseS,fel?(Q2, m), geQ (we define f(g) = 0 if g ¢ Q). If we take the
measure y = J, (the point mass at ) then Theorem 10 shows that the above
semigroup is reflexive,

Example 18 shows that a natural unilateral translation (for the definition
see [2]) on the semigroup of finite sequences of non-negative reals is reflexive.
But a modified unilateral translation is unitarily equivalent to a natural
unilateral translation (see [2]), hence we have

COROLLARY 19. A modified unilateral translation on the semigroup of finite
sequences of non-negative reals is reflexive.
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