COLLOQUIUM MATHEMATICUM

VOL. XXXIV 1976 . FASC. 2

ON ELEMENTARY EQUIVALENCE OF ABELIAN GROUPS
BY

FRED CLARE (BOULDER, COLORADO)

In this paper necessary and sufficient conditions are given for two
abelian groups of finite exponent to be elementarily equivalent, and for
two divisible abelian groups to be elementarily equivalent. For each re-
duced abelian group U, a countable reduced abelian group is exhibited
which is elementarily equivalent to %, and for two abelian groups ¥ and ‘B,
necessary and sufficient conditions are given in terms of the reduced and
divisible factors of these groups such that % and B be elementarily equivalent.

Throughout, German type letters will denote abelian groups, and
the corresponding Roman letters — the universes of these groups. For
a set I and groups A; with ie I, [| A; will denote the Cartesian product

tel
of the %A’s and Y UA; will denote the direct sum; A’ will denote [] U,
il iel
and AP will denote > A. If m,; is a natural number for ie I, Y m; will
tel iel

denote the usual sum; if this sum is not finite, we write > m; = w.
tel
This dual usage of the symbol )’ should cause the reader no difficulty
as its meaning will always be clear from the context. If & is an ultrafilter
on I, then A’/# will denote the ultrapower of A over #. Let # denote
the set of positive primes and put £+ = £U{0}; for a group A, pe 2,
and we A, let o(x) denote the order of z, set

A, = {we A: o(x) is a power of p},

and let exp(A) be the exponent of A. Let w be the set of non-negative
integers and put N = w—{0}. For ne w and pe 2, let 3(p,n) be the
cyclic group of order p” and let 3(p*) be the quasicyclic group of type p™.
Let D be the rationals under addition and, for pe 2, let

D(p) ={m/neQ: p and »n are relatively prime}.

For groups U and B we write A = B iff A is elementarily equivalent
to B. If ¢ is a formula in the language of abelian groups, we write A = ¢
for ‘Y semantically yields ¢”.
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We shall make extensive use of Szmielew’s characterization of ele-
mentary equivalence between abelian groups [3], and, for the reader’s
convenience, we state her fundamental result in Theorem 1 in the sequel.

Definition 1. For an abelian group U and m, ne o,

(i) @, ye A are called congruent modulo m, denoted by ¢ = y (mod m),
if # = y+mz for some z¢ 4;

(ii) @4,y ..., 2, A are independent modulo m if, for every sequence

of integers m,,..., m,, it follows that

m®+ ... +m,», =0 implies m; =0 (modm) for ¢ =1, ..., n;

(iii) %4y ..., 2, A are strongly independent modulo m if, for every
sequence of integers m,, ..., m,, it follows that

M@yt .o +MpB, = 0 (modm) implies m; =0 (modm)
for 1 =1,...,n.

Definition 2. Given A, pe ?, and ke N, for 1 =1, 2, 3, define
the i-th rank modulo p* of U, denoted by o®[p, ¥]U, as the maximum
finite number, if it exists, of elements in A which are,

for ¢ = 1, of order p* and independent modulo p*,

for + = 2, strongly independent modulo p*,

for ¢ = 3, of order p* and strongly independent modulo p*.

If such a maximum number does not exist, set ¢ [p, k]UA = N,.

THEOREM 1 (Szmielew [3]). A =B iff, for every pe P and ke N,
we have )

(I) Q(i)[pa k1A = Q(i)[p9 k1B (: =1, 2, 3),
(II) exp(A) < w iff -exp(B) < w.
CoROLLARY. Any A is elementarily equivalent to a group of the form

Z 3(p, n)®m) 4 Zi)(p)(ﬁ(”)) + 23(pw)(v(p)) +D@,

neN,pedP peP peP?

where a(p, n), B(p) and y(p) are cardinals not greater than w and 8¢ {0, 1}.
We shall also make use of the facts that
Otp, K1 [[%) = D oy, k1% ama  []u = Y9,
tel tel

tel {el
both of which are easy consequences of Theorem 1. The ranks of various
commonly-used abelian groups are known and given in Theorem 1.9
of [3].
If exp (%) < w, then it is well known that there are cardinals «; such
that A ~C+ ... +C*, where €, = 3(p;,n;) with p,eP, meXN
for 1<i<rand p, #p,for k #1.
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THEOREM 2. Let exp(W) < o and WA ~C*V+ ... +C as above.
Then B = iff B =CP+ ... +CP), where min{a;,N,} = min{f;, No}
for 1< | '

Proof. Suppose exp(A) < w, and A is of the stated form. If B = U,
then

exp(B)<w and BB ... +BA,
where B, = 3(g;, m;) for 1 <1< t. Since A =B, we have
e lg, m U = ¢P[q;, m]B = min {B;, No} > 0.

From this it follows that B; ~ ¢, for some j with 1 < j < r. Similarly
we can show that each §; is isomorphic to some B;, so after a suitable
rearrangement

B=CP ... 46
and
min {a;, No}‘ = 9(3)[1717 ] A = 9(3)[1’17 m] B = min{f;, N0} for 1<Ir.

For the converse, if B has the stated representation, it is not difficult
to verify the conditions of Theorem 1 to show that B = .
If U is a divisible abelian group, then it is well known that

A= D+ D (™)
peP
for some choice of cardinals n, with pe 27.
THEOREM 3. Let A be a non-trivial divisible abelian group, say
A DO+ ) (™)
peP
as above. Then B = A iff B is non-trivial and
B =W+ 335,
pe@

where 1, can be any cardinal consistent with B # {0} and, for pe @, 1, is
any cardinal such that min{l,,N,} = min{n,,N}.

Proof. Suppose that A is non-trivial and has the stated form. If
B =Y, then B is divisible, so

B =D+ Y 3(p=)

peP

for cardinals I, with pe #*. Using Theorem 1 and basic facts on ranks,
we infer that for pe # and ke N,

min {ng, No} = ¢ [p, k1A = ¢V [p, k1B = min{l,, N} .
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For the converse, suppose {0} #B ~ D%+ 3 3(p>), where I,
peP

is any cardinal consistent with B # {0}, and min{l,,N,} = min {n,, N}
for pe #. Since B is non-trivial, exp(B) =N, = exp(A). For pe £ and
ke N,
0P[p, k1A =0 = oD[p, k1B for i =2, 3.
Also
¢[p, k] = min{n,, N} = minl,, N} = ¢[p, k1B,

so, by Theorem 1, A = B.

LeMMA 1. If A =B and pe P, then A, =B,,.

Proof. Suppose A =B and pe P, but A, = B,. In the case where
one of exp(%,), exp(B,) is infinite and the other is finite a contradiction
is easily obtained. Assume exp(2,) and exp(B,) are either both infinite
or both finite. Then, by Theorem 1, ¢[g, k], # o [q, k]B, for some
te{l, 2, 3}, ge P, and ke N. Assume without loss of generality that

No= 0¥[g, k1%, =n>m = oV[q, k1B,

and choose distinet «,,...,2,,,¢ A4, with the appropriate orders and
independence property of Definition 2 (depending upon the value of i)-
It can be shown that these elements satisfy the same independence prop.
erty in 2. Since A = B, there are a set I and an ultrafilter # on I such
that AY|# ~ B*/#F by an isomorphism & (see [1] and [2]). For 1< j
<m+1, let @; = (U y, where u; = x; for all ieI. Set Z; = #;/#, and
let y; = D(;). From here it is easy to show that y;e Bl/# for 1 <j < m+1
and that y,,...,¥,,; have the appropriate independence property.
Therefore, '

?lg, k)(Bp/F) > m+1,
whence ¢[g, k1(B,) > m+1, since B, =B;/#. But this contradicts
e®lg, k1B, = m.
LEMMA 2. If R is reduced and
R = 3 3(p, ) 1D (p)?+3 ()
neN .
Jor cardinals a(n), B and y, then
R =D 3(p,n) 1D (p)?.
neN
Proof. If y = 0, we are finished; so assume y # 0. For convenience
of notation, set
A= D'3(@,n)0™, B=Dp" and €=3E".

neN
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Case 1. exp(A) =N,.
In this case we have o"[p, k]U =N, for ke N, whence

ePp, k](A+B+C) = o [p, E}(A+B).
Also,
¢Vg, F1(A+B+E) =0 = ¢V[q, kI(A+B) for ¢ #p and ke N.

Next, for ge # and ke N, we have

9(2)[Q7 k1€ = 9(3)[Q7 k1€ =0,
SO
eV, k1 (A+B+C) = oP[q, k]J(A+B) for i =2, 3.

Since exp(A+B +C) =N, = exp(A+B), it follows from Theorem 1
that A+B+C = A+B.

Case 2. exp(A) = p™ < N,.

For 1, ne N, set

Pro = Vo (o(@) = p' - Y2 (p™2 = yany = p™a)).

Then R = ¢, ,; for se w, set y, = w(o(w) = p°). Then, since y > 0,
we have A+B +C = y,, whence R = y,. If we let

8 = {p™®: o(x) < w and z¢ R},

S is a subgroup of R. It is easy to see that xe¢ R and o(x) < w imply
o(w) = p' for some le w. Choose ye S with ¥ # 0; then y = p™x for some
2 R with o(s) < o, and o(x) = p’ for some le N. Let ne N. Then, since
"R = ¢, there exist w, ze¢ B such that p™z =w and nw =p™z =y,
i.e. we S and nw = y. Therefore, S # {0} and & is divisible, contrary
to R’s being reduced.

LEMMA 3. If R = UA+DO, R is reduced, and exp(N) < w, then a = 0.
Proof. Suppose a > 0 and exp(A) = m < w. For ne N, set

¢n, = Vaedzdw(z = mwamz = nz).
Since A +D@ = ¢, for all ne N, R = ¢,,. Set
- B = {mx: z< R and o(x) = N,}.

Then, clearly, B # 0. Choose ye B, ne N; then ¥y = ma, where z¢ R
and o(2) =N,. Since R = ¢,,, there are 2, we R such that 2 = mw and
Yy =mx =nz. Now, o(x) =N, implies o(2) = o(w) =N,. Therefore,
Yy = nz with ze B, so the subgroup of R generated by B is divisible and
non-empty, contrary to R’s being reduced.
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THEOREM 4. If R is reduced, then
R = 3(p, n)@m) 4 NG
nclé‘e.? ’ 11:291

for some choice of cardinals a(p,n), f(p)e w+1.

Proof. If R has a finite exponent, then R is isomorphic to a direct
sum of cyclic groups and we are finished. Thus assume R has an infinite
exponent. From the Corollary to Theorem 1 we know that

R =A+B+C+D™,
where Y = Z 3(1;, ,n)(a(p,n))’ B = Zg(p)(ﬁ(p)), C = 23(pw)(y(p))

neN,pe? ped peP

/

for some choice of a(p, n), f(p), y(P)e ©+1 and me {0, 1}.

Case 1. A+PB +C has a finite exponent.

In this case y(p) = B(p) = 0 for all pe &, and A has a finite exponent.
Thus R = A+D™, where R is reduced and A has a finite exponent; so,
by Lemma 3, m = 0.

Case 2. A+B+C has an infinite exponent.

In this case R =A+B+C+D™ =A+B+C, where the second
equivalence follows from Theorem 1. Now,

A+B+C = D 'B(p),

peP

where B(p) = Y, 3(p, n)*P™) +3(p)@) 4+ 3 (p=)0w),

neN
By Lemma 1,

R, = D' B(p)), = D 3(p, )™ -3(p)0r®),
DeP neN
But, since R is reduced, so is R,. Hence, by Lemma 2,

D 3(p, @M 13(p=)00) = 3'3(p, m)(etem).

neN neN
Therefore

/

B(p) = ) 3(p, m)@™) D (p)e,

neN
SO

R= )8 =D 3" +D(p) ) =~ A+3B,
PP

peP neN
where we have made use of the fact that UW; = B, for i¢ I implies

2% =%

iel fel
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THEOREM 5. Let D,, D, be divisible, and R,, R, reduced. Then D, +R,
=D+ Ry ¢ff

(i) exp(D;+R) <Ny  off exp(Dy+R,) <Ny,
(i) Ro=Ro= D 3(p,n) M4 Y (p)an)
neN,pe? peP

for some a(p,n), f(p)e w+1,
() D 33PN +DO  and Dy 3 3(p™)) 4D,

peP . peP

where a, a* can be any cardinals consistent with condition (i) and, for each
pe?, y(p), y(p)* can be any cardinals consistent with condition (i) unless

2, a(p,n) <  in which case min{X,, y(p)} = min{R,, »(p)"}.
neN

Proof. Suppose the conditions hold. Then, by condition (i) and
Theorem 1, it suffices to show

0D [p, E1(D,+Ry) = 0[P, k](Do+Ry) fori=1,2,3,pe#P, and ke N.
For + =2, 3, pe? and ke N, we have
o [p, k1(D:1+R) = oV [p, k1D:+ 0¥ [p, k1R, = o¥[p, kIR,
= o[p; kIR. = o[, k1D, + o [p, k1R,
= o“p, K1(D,+Ra).
For pe P, ke N,
dp, k(D1 +R) = »(p)+ D a(p, n)

n=k
and

V[P, KI(Da+Ra) = 7(2)*+ D a(p, n)*.

n>k
Now, R, = R, implies

Za(p’ n) = 2“(1’1 'n')*

n=k n=k

If Y a(p,n) < w, then either y(p) < w in which case
neN

y(p) = y(p)* and e“)[P, E](D,+R,) = 9(1)[27, E]1(Dy+ R,),

or y(p) =N, in which case

y()* =8, and V[P, K1(D1+Ry) =N, = ¢®[p, k](Ds+Ry).
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Conversely, suppose D, + R, =D, +R,. Condition (i) follows from
Theorem 1. By Theorem 4,

R, =R, where R} =A+B

with % = ) 3(p,n)*™™ and B = ' D(p)*),

neN,pe? ped
and
R, =Ry, where R} = A +B*
with %" = 2 3(p, n)*®™*) and B* = Zg(p)(ﬂ(p)‘),
neN,pe? peP
Thus
(1) Dl—*‘mr ED1+9{1 ED2+m2 Ebz"‘}"m;-

From basic group theory we know that
Dy 3N 400 and D, = Y F(pT)®) LD
peP peP
for cardinals 6, 6*, so, for pe 2, ke N and ¢ = 2, 3, we have

e?p, kIR = o¥p, k1R +D,) = o“[p, K1(R: +D2) = o¥[p, kIR,
where the middle equality follows from (1) and Theorem 1. In particular,
note that, for each le N,

(2) min{a(p,1), ¥} = D ¢®Ip, 11(3(p, 0)**™) = ¢ [p, IR

neN
= 9(3)[23, 11%; = min{a(p, l)*y&o}'
If oO[p, E1RT = oV [p, k1R;, say without loss of generality
Ro = oM [p, KIRT = m > n = oW[p, kIR,
then
Za(p,l) =m>n =2a(p,l)*

1=k >k

which contradicts (2). To complete the verification of condition (ii) it
suffices to show that exp (R}) is finite iff exp (R;) is finite. Suppose exp (R;)
=No > n = exp(R;). Then B(p)* =0 for all pe #, and there are only
finitely many non-zero a(p, n)*’s for ne N. Set

k = max{n: a(p,n)* > 0}.

From (2) we know that a(p,l) = 0 for all 1 > k; so if f(p) = 0 for
all pe #, then exp(R}) < N,, contrary to our assumption. On the other
hand, if there is a pe 2 such that g(p) > 0, then for I > k¥ we would have
oD[p, 11N > B(p) > 0, whereas o®[p, 1]R; = 0, contrary to

9(2)[]), l]m; = 9(2)[]), l]m;
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Finally, to prove the remaining part of condition (iii) suppose

Za,(pv 7)< 0.

. neN
From (2) we know that a(p,n) = a(p, n)* for all n > k, so condition
(iii) then follows from
y(@)+ Y a(@,n) = V[, k1D +Ry) = ¢V [p, k1(Ds+Ry)

n=k ]

= (@) + D a(p, n)*.

n=k

——
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