1990

PARABOLIC NETWORKS AND POLYNOMIAL GROWTH

BY

P. M. SOARDI (MILANO)

1. Introduction and notation. Suppose that Γ is an infinite connected graph, without self-loops and multiple edges, whose vertices x have finite degree d_x .

Denote by V and E the vertex and edge set respectively. If x and y are neighbouring vertices, let us write $x \sim y$. For all p, $1 , and every real function <math>\phi$ defined on V, the *Dirichlet sum* of ϕ of order p is defined as

(1)
$$D_p(\phi) = \sum_{x \sim y} |\phi(x) - \phi(y)|^p.$$

Choose, once for all, a reference vertex o and let L_0 denote the linear space of all real-valued finitely supported functions on V. We say that Γ is parabolic of type p, or p-parabolic, if, for some choice of o,

$$\inf\{D_p(\phi); \ \phi \in L_0 \ \text{and} \ \phi(o) = 1\} = 0.$$

Otherwise we say that Γ is hyperbolic of type p. Note that if Γ is parabolic of order p, then it is parabolic of order s for all $s \geq p$. The notion of parabolic graph (or network) was introduced by Yamasaki [Y1] in analogy with the classification theory of Riemann surfaces. In fact, for p=2 the sum (1) is the discrete analogue of the energy integral.

Let d(x,y) denote the geodesic distance between two vertices x and y, i.e. the minimal number of edges of a (non-self-intersecting) path joining x and y. Let E(r) denote the subset of all edges whose endpoints x_1 and x_2 satisfy $d(x_i, o) \leq r$ (i = 1, 2). We say that Γ has polynomial growth of order p (where $1) if there is a constant <math>\mu$ such that, for all r, card $E(r) \leq \mu r^p$. The following theorem is our main result.

THEOREM. If Γ has polynomial growth of order p, for some $1 , then <math>\Gamma$ is p-parabolic.

Key words and phrases: parabolic networks, polynomial growth of graphs, Dirichlet sums, nonlinear infinite networks.

¹⁹⁸⁰ Mathematics Subject Classification: Primary 46N05, 94C15.

The proof is based on the study of parabolic and hyperbolic graphs (networks) due to Yamasaki and Kayano and Yamasaki (see [Y1], [Y2], [K-Y] and the references there). We will review some of their results in the next section.

Let us now give an interpretation of the theorem in terms of infinite non-linear networks. Suppose that every edge b of an infinite electrical network, represented by Γ , is assigned the following relation between the voltage v_b and the current i_b flowing in the edge:

$$(2) v_b = \operatorname{sign}(i_b)|i_b|^{q-1}$$

where q is the dual exponent of p (such networks are a particular case of the networks studied in [DM-S] in the more general context of modular sequence spaces). When q=2 the network is called *linear* or *ohmic* (with all the resistances equal to 1). The relation between linear networks, random walks on graphs and Dirichlet finite harmonic functions has been studied by several authors in recent years; see e.g. [C-W], [D], [F], [G], [L], [N-W], [S], [S-W], [T1], [T2], [Z].

An important problem consists in determining for which networks, in absence of current and voltage sources, Kirchhoff's equations (see e.g. [F], [S-W], and [DM-S] for the nonlinear case) do not admit nontrivial solutions in ℓ^q (the so-called "uniqueness" problem).

Let, for every $x \in V$ and every function ϕ defined on V,

$$\Delta_p(\phi)(x) = \sum_{x \sim y} \operatorname{sign} \left(\phi(x) - \phi(y)\right) |\phi(x) - \phi(y)|^{p-1}.$$

The operator Δ_p is called the (discrete) laplacian of order p. If a function ϕ satisfies $\Delta_p(\phi)(x) = 0$ for all $x \in V$, then ϕ is called p-harmonic.

In the linear case the laplacian of order p is proportional to the usual laplacian associated with the simple random walk on the graph Γ (see the remark at the end of Section 3), and ϕ is 2-harmonic if and only if it is harmonic on Γ with respect to the latter operator.

It is known that the uniqueness problem has an affirmative answer in linear networks if and only if there are no nonconstant 2-harmonic functions having finite Dirichlet sums. For instance, this happens if Γ has polynomial growth and is vertex transitive (see [S-W]; for other uniqueness results see [S] and [T2]).

In the nonlinear case it follows from Kirchhoff's loop law and [F, Theorem on p. 328] that, if v_b is as in (2), then there exists ϕ on V (the potential) such that, for every edge $b = [x_1, x_2]$,

$$v_b = \phi(x_2) - \phi(x_1).$$

Then, as in the linear case (see [S-W]), it follows from Kirchhoff's node law

that "uniqueness" holds (in ℓ^q) if and only if

(3)
$$D_p(\phi) < \infty \text{ and } \Delta_p(\phi)(x) = 0 \text{ for all } x \in V$$

imply that ϕ is constant. Now, if Γ is p-parabolic it follows from [Y1, Theorem 3.2] (see Proposition 1 below) combined with [Y2, Lemma 2.3] that conditions (3) actually imply $\phi = \text{const.}$

Therefore the above theorem is a "uniqueness" theorem for nonlinear networks of type (2) whose underlying graph has polynomial growth of order p.

2. Some properties of parabolic graphs. We norm L_0 by

(4)
$$||\phi||_p = (|\phi(o)|^p + D_p(\phi))^{1/p}, \quad \phi \in L_0,$$

and denote by $\mathbf{D}_0^{(p)}$ the completion of L_0 with the norm (4). We also denote by $\mathbf{D}^{(p)}$ the Banach space of all (real-valued) functions ϕ on V such that the norm (4) is finite. Then $\mathbf{D}_0^{(p)}$ is a closed subspace of $\mathbf{D}^{(p)}$, see [Y1].

PROPOSITION 1 [Y1, Theorem 3.2]. The following are equivalent:

- (a) Γ is p-parabolic,
- (b) $1 \in \mathbf{D}^{(p)}$,
- (c) $\mathbf{D}_0^{(p)} = \mathbf{D}^{(p)}$.

We come now to the notion of extremal length of order p of a set of path in Γ [K-Y, §2]. Let w be a nonnegative function on the edge set E. Its energy of order p $(1 , <math>H_p(w)$, is defined as

$$H_p(w) = \sum_{b \in E} w^p(b).$$

Let **P** be a set of one-sided (non-self-intersecting) infinite paths in Γ .

DEFINITION. The extremal length of order p, $\lambda_p(\mathbf{P})$, of \mathbf{P} is defined as

$$(5) \qquad (\lambda_p(\mathbf{P}))^{-1} = \inf H_p(w),$$

where the infimum in (5) is taken over the set of all nonnegative w such that $H_p(w) < \infty$ and $\sum_{b \in E(\mathbf{p})} w(b) \ge 1$ for all paths $\mathbf{p} \in \mathbf{P}$ (here $E(\mathbf{p})$ denotes the edge set of \mathbf{p}).

If a property holds for all paths in P except for a subset of extremal length ∞ we will say that the property holds for p-almost all paths in P.

For every $x_0 \in V$ let now P_{x_0} denote the set of all one-sided (non-self-intersecting) infinite paths having x_0 as first vertex. The following proposition characterizes p-parabolic networks.

PROPOSITION 2 (see [Y1, Theorem 4.1]). Γ is parabolic of type p if and only if there exists $x_0 \in V$ such that $\lambda_p(\mathbf{P}_{x_0}) = \infty$.

In the proof of our main result we will need the following result due to Kayano and Yamasaki.

PROPOSITION 3 [K-Y, Theorem 3.3]. Let $\phi \in \mathbf{D}_0^{(p)}$ and $x_0 \in V$. Then, for p-almost every $\mathbf{p} \in \mathbf{P}_{x_0}$, $\lim \phi(x) = 0$ as $x \to \infty$ along the vertices of \mathbf{p} .

3. Proof of the Theorem. We start with an elementary lemma.

LEMMA. Let $1 and suppose that <math>\Gamma$ has polynomial growth of order p. Let e_r denote the cardinality of E(r), $r = 0, 1, 2, \ldots$ Then

$$\sum_{r=2}^{\infty} \frac{e_{r+1} - e_r}{r^p \log^p r} < \infty.$$

Proof. Assume, without loss of generality, that $\mu = 1$ and $e_2 = 2^p$. Let y(x) $(2 \le x < \infty)$ denote the function whose graph is obtained by joining the points (r, e_r) and $(r + 1, e_{r+1})$ by line segments. Then

$$\sum_{r=2}^{\infty} \frac{e_{r+1} - e_r}{r^p \log^p r} \leq \text{const} \cdot \int_{2}^{\infty} \frac{y'(x)}{x^p \log^p x} dx.$$

Let $t(x) = x^p - y(x)$ and, for every M > 2,

$$F_{M}(\theta) = \int_{0}^{M} \frac{y'(x) + \theta t'(x)}{x^{p} \log^{p} x} dx, \qquad 0 \leq \theta \leq 1.$$

Then

$$F'_{M}(\theta) = \frac{t(M)}{M^{p} \log^{p} M} + p \int_{2}^{M} \frac{t(x)}{x^{p+1} \log^{p+1} x} (1 + \log x) \, dx > 0.$$

Hence

$$\int_{2}^{\infty} \frac{y'(x)}{x^{p} \log^{p} x} dx = \lim_{M \to \infty} F_{M}(0)$$

$$\leq \lim_{M \to \infty} F_{M}(1) = p \int_{2}^{\infty} \frac{1}{x^{p} \log^{p} x} dx < \infty. \quad \blacksquare$$

Proof of the Theorem. For every positive real ρ let

$$\alpha(\rho) = (10)^{-1} \log(1 + \log(1 + \rho)), \qquad f(\rho) = \sin \alpha(\rho).$$

For all $x \in V$ let |x| = d(x, o) denote the geodesic distance of x from the reference vertex o and let $\phi(x) = f(|x|)$.

Denote by $\rho_k = \exp(e^{10k\pi} - 1) - 1$ (k = 1, 2, ...) the zeros of f. Let

$$\phi_k(x) = \begin{cases} \phi(x), & \text{for } |x| \leq \rho_k, \\ 0, & \text{for } |x| \geq \rho_k. \end{cases}$$

Then ϕ_k belongs to L_0 . We will show that $D_p(\phi - \phi_k) \to 0$, so that $\phi \in \mathbf{D}_0^{(p)}$. Set $\psi_k = \phi - \phi_k$ and $S(r) = E(r+1)\backslash E(r)$. Let [x,y] denote the (unoriented) edge having x and y as endpoints. Then

(6)
$$D_p(\psi_k) = \sum_{r>\rho_k-1}^{\infty} \sum_{[x,y]\in S(r)} |\psi_k(x) - \psi_k(y)|^p.$$

We have, for $|x| = r \ge \rho_k$, |y| = r + 1,

(7)
$$|\psi_k(x) - \psi_k(y)|^p \le \int_r^{r+1} |f'(\rho)|^p d\rho \le \int_r^{r+1} h(\rho) d\rho$$

where $h(\rho) = (10\rho)^{-p} \log^{-p} \rho$.

If $\rho_k - 1 < r \le \rho_k$ and |x| = r, |y| = r + 1, then $\psi_k(x) = 0 = f(\rho_k)$, so that

(8)
$$|\psi_{k}(x) - \psi_{k}(y)|^{p} \leq \int_{\rho_{k}}^{r+1} |f'(\rho)|^{p} d\rho \leq \int_{r}^{r+1} h(\rho) d\rho.$$

There exists a positive constant κ such that, for large values of ρ and every ρ^* satisfying $|\rho - \rho^*| \leq 1$, $h(\rho)(h(\rho^*))^{-1} < \kappa$.

Let, as in the preceding Lemma, e_r denote the cardinality of E(r). Since there are $e_{r+1} - e_r$ edges in S(r), we have by (6), (7) and (8)

$$D_p(\psi_k) \le \kappa (10)^{-p} \sum_{r>o_k-1}^{\infty} \frac{e_{r+1}-e_r}{r^p \log^p r},$$

so that $D_p(\psi_k) \to 0$ as $k \to \infty$ by the Lemma. Therefore $\phi \in \mathbf{D}_0^{(p)}$.

Now let **p** be any one-sided infinite (non-self-intersecting) path in Γ starting at the reference vertex o. There exist two sequences, say ρ_n and ρ_m , tending to infinity, such that

$$|f(\rho_n)| < 1/5,$$
 $|f(\rho_m)| > 4/5.$

Since $|f(\rho_1) - f(\rho_2)| \le (10)^{-1} |\rho_1 - \rho_2|$ for all positive ρ_1 and ρ_2 , there are two infinite sequences of vertices of \mathbf{p} , say $x_{k(n)}$ and $x_{k(m)}$, such that

$$|\phi(x_{k(n)})| < 2/5, \qquad |\phi(x_{k(m)})| > 3/5.$$

Hence $\phi(x)$ does not have a limit as x tends to infinity along the vertices of any path in P_o . By Proposition 3 the extremal length of order p of P_o is ∞ . But then, by Proposition 2, Γ is p-parabolic. This concludes the proof.

Remark. The simple random walk on Γ mentioned in Section 1 is the Markov chain with state space V and probability d_x^{-1} of moving from x to a neighbour y. It is easy to show, on account of a theorem of Lyons [L, p. 394], that Γ is 2-parabolic if and only if the simple random walk is recurrent. The details of the proof are worked out in [So, Theorem 1].

Hence, by our Theorem, if Γ has quadratic growth then Γ is recurrent. This can be also deduced (with an argument similar to the one given in the above Lemma) from Nash-Williams' criterion for recurrence ([N-W, Theorem 2]; see also the paper [McG]).

REFERENCES

- [C-W] D. I. Cartwright and W. Woess, Infinite graphs with nonconstant Dirichlet finite harmonic functions, preprint.
 - [D] P. Doyle, Electric currents in infinite networks, preprint.
- [DM-S] L. De Michele and P. M. Soardi, A Thomson's principle for infinite, nonlinear resistive networks, Proc. Amer. Math. Soc. 109 (1990), 461-468.
 - [F] H. Flanders, Infinite networks I. Resistive networks, IEEE Trans. Circuit Theory 18 (1971), 326-331.
 - [G] P. Gerl, Random walks on graphs with a strong isoperimetric inequality, J. Theoret. Probab. 1 (1988), 171-187.
 - [K-Y] T. Kayano and M. Yamasaki, Boundary limits of discrete Dirichlet potentials, Hiroshima Math. J. 14 (1984), 401-406.
 - [L] T. Lyons, A simple criterion for transience of a reversible Markov chain, Ann. Probab. 11 (1984), 393-402.
- [McG] S. McGuinnes, Recurrent networks and a theorem of Nash-Williams, preprint.
- [N-W] C. St. J. A. Nash-Williams, Random walks and electrical currents in networks, Proc. Cambridge Philos. Soc. 55 (1959), 181-194.
 - [S] E. Schlesinger, Infinite networks and Markov chains, preprint.
 - [So] P. M. Soardi, Recurrence and transience of the edge graph of a tiling of the euclidean plane, Math. Ann. 287 (1990), 613-626.
- [S-W] P. M. Soardi and W. Woess, Uniqueness of currents in infinite resistive networks, Discrete Appl. Math., in print.
 - [T1] C. Thomassen, Resistances and currents in infinite electrical networks, J. Combin. Theory Ser. B, in print.
 - [T2] —, Transient random walks, harmonic functions and electric currents in infinite networks, preprint.
 - [Y1] M. Yamasaki, Parabolic and hyperbolic infinite networks, Hiroshima Math. J. 7 (1977), 135-146.
 - [Y2] —, Ideal boundary limits of discrete Dirichlet functions, ibid. 16 (1986), 353–360.
 - [Z] A. H. Zemanian, *Infinite electrical networks*, Proc. Inst. Electr. Engrs. 64 (1976), 6-17.

DIPARTIMENTO DI MATEMATICA DELL'UNIVERSITÀ VIA SALDINI 50 20133 MILANO, ITALY