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PARABOLIC NETWORKS AND POLYNOMIAL GROWTH

BY

P. M. SOARDI (MILANO)

1. Introduction and notation. Suppose that I' is an infinite con-
nected graph, without self-loops and multiple edges, whose vertices z have
finite degree d,.

Denote by V and F the vertex and edge set respectively. If z and y are
neighbouring vertices, let us write z ~ y. For all p, 1 < p < o0, and every
real function ¢ defined on V, the Dirichlet sum of ¢ of order p is defined as

(1) Dy(¢) = ) _ 16(z) - d(y)IP.

T~y
Choose, once for all, a reference vertex o and let Lo denote the linear space of
all real-valued finitely supported functions on V. We say that I is parabolic
of type p, or p-parabolic, if, for some choice of o,

inf{D,(¢); ¢ € Ly and ¢(0) =1} =0.

Otherwise we say that I’ is hyperbolic of type p. Note that if I is parabolic of
order p, then it is parabolic of order s for all s > p. The notion of parabolic
graph (or network) was introduced by Yamasaki [Y1] in analogy with the
classification theory of Riemann surfaces. In fact, for p = 2 the sum (1) is
the discrete analogue of the energy integral.

Let d(z,y) denote the geodesic distance between two vertices z and y,
i.e. the minimal number of edges of a (non-self-intersecting) path joining z
and y. Let E(r) denote the subset of all edges whose endpoints z; and z,
satisfy d(z;,0) < r (i = 1,2). We say that I" has polynomial growth of
order p (where 1 < p < o0) if there is a constant g such that, for all r,
card E(r) < urP. The following theorem is our main result.

THEOREM. If I' has polynomial growth of order p, for some 1 < p < o0,
then I' is p-parabolic.
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The proof is based on the study of parabolic and hyperbolic graphs
(networks) due to Yamasaki and Kayano and Yamasaki (see [Y1], [Y2], [K-
Y] and the references there). We will review some of their results in the
next section.

Let us now give an interpretation of the theorem in terms of infinite non-
linear networks. Suppose that every edge b of an infinite electrical network,
represented by I', is assigned the following relation between the voltage v,
and the current ¢, flowing in the edge:

(2) vy = sign (ip)|ds|? ™"

where ¢ is the dual exponent of p (such networks are a particular case of
the networks studied in [DM-S] in the more general context of modular
sequence spaces). When ¢ = 2 the network is called linear or ohmic (with
all the resistances equal to 1). The relation between linear netwarks, random
walks on graphs and Dirichlet finite harmonic functions has been studied by
several authors in recent years; see e.g. [C-W], [D], [F}, [G], [L], [N-W], [S],
[S'W]a [TI]’ [T2]a [Z]

An important problem consists in determining for which networks, in
absence of current and voltage sources, Kirchhoff’s equations (see e.g. [F],
[S-W], and [DM-S] for the nonlinear case) do not admit nontrivial solutions
in £9 (the so-called “uniqueness” problem).

Let, for every z € V and every function ¢ defined on V,

A,(8)(2) = Y sign (4(z) - $())|4(z) - S,
T~y
The operator A, is called the (discrete) laplacian of order p. If a function ¢
satisfies A,(¢)(z) = 0 for all z € V, then ¢ is called p-harmonic.

In the linear case the laplacian of order p is proportional to the usual
laplacian associated with the simple random walk on the graph I' (see the
remark at the end of Section 3), and ¢ is 2-harmonic if and only if it is
harmonic on I" with respect to the latter operator.

It is known that the uniqueness problem has an affirmative answer in
linear networks if and only if there are no nonconstant 2-harmonic functions
having finite Dirichlet sums. For instance, this happens if I" has polynomial
growth and is vertex transitive (see [S-W]; for other uniqueness results see [S]
and [T2)]).

In the nonlinear case it follows from Kirchhoff’s loop law and [F, Theorem
on p. 328] that, if v is as in (2), then there exists ¢ on V (the potential)
such that, for every edge b = [z;, z,),

vy = §(z2) — P(1).

Then, as in the linear case (see [S-W]), it follows from Kirchhoff’s node law
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that “uniqueness” holds (in ¢7) if and only if
(3) Dy(¢) < 00 and Ap(P)(z)=0 forall zeV

imply that ¢ is constant. Now, if I" is p-parabolic it follows from [Y1,
Theorem 3.2] (see Proposition 1 below) combined with [Y2, Lemma 2.3]
that conditions (3) actually imply ¢ = const.

Therefore the above theorem is a “uniqueness” theorem for nonlinear
networks of type (2) whose underlying graph has polynomial growth of or-
der p.

2. Some properties of parabolic graphs. We norm L, by

(4) lI¢lly = (I16(0)IP + Dp(¢))'/?, & € Lo,
and denote by Df," ) the completion of Ly with the norm (4). We also denote
by D(P) the Banach space of all (real-valued) functions ¢ on V such that
the norm (4) is finite. Then Df,’ ) is a closed subspace of D(P), see [Y1].
PRrOPOSITION 1 [Y1, Theorem 3.2]. The following are equivalent:
(a) I is p-parabolic,
(b) 1 € D),
(c) D{P = DO,
We come now to the notion of extremal length of order p of a set of path

in I [K-Y, §2]. Let w be a nonnegative function on the edge set E. Its
energy of order p (1 < p < o), Hy(w), is defined as

Hp(w) = Z wP(b).
bEE
Let P be a set of one-sided (non-self-intersecting) infinite paths in I'.
DEFINITION. The eztremal length of order p, A,(P), of P is defined as
() (Ap(P))™" = inf Hy(w),
where the infimum in (5) is taken over the set of all nonnegative w such that

Hp(w) < 00 and 3, p(p) w(b) 2 1 for all paths p € P (here E(p) denotes
the edge set of p).

If a property holds for all paths in P except for a subset of extremal
length co we will say that the property holds for p-almost all paths in P.

For every zg € V let now P, denote the set of all one-sided (non-self-
<intersecting) infinite paths having z¢ as first vertex. The following proposi-
tion characterizes p-parabolic networks.

PRrOPOSITION 2 (see [Y1, Theorem 4.1]). I is parabolic of type p if and
only if there ezists zo € V such that A,(P;,) = oo.
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In the proof of our main result we will need the following result due to
Kayano and Yamasaki.

ProposITION 3 [K-Y, Theorem 3.3). Let ¢ € Dg”) and zo € V. Then,
for p-almost every p € P, lim¢(z) = 0 as £ — oo along the vertices of p.

3. Proof of the Theorem. We start with an elementary lemma.

LEMMA. Let 1 < p < oo and suppose that I' has polynomial growth of
order p. Let e, denote the cardinality of E(r), r = 0,1,2,... Then

2 € €
) -
E -ﬁ(oo.
=2 Og T

Proof. Assume, without loss of generality, that u = 1 and e; = 2P. Let
y(z) (2 < £ < 00) denote the function whose graph is obtained by joining
the points (r,e,) and (7 + 1, e,41) by line segments. Then

2 €y — €y y(z)
r+1 —
Z; rPlogPr ~ S const - f zPlog? z

Let t(z) = z? — y(z) and, for every M > 2,

M, + o'
Fum(6) = 2f 4 (:2log” z(:v)

dz, 0<6<1.

Then

) N C)

Fa(6) = Mrlog? M zP+1]ogPt! z(l +loga)dz > 0.

Hence

[E@ 4o tim Fuo)
zplogPz = Moo M

oo
< A}EnooFM(l) = pzf log’ 2 dz < o00. m

Proof of the Theorem. For every positive real p let

a(p) = (10)log(1 +log(1+p)),  f(p) = sina(p).

For all z € V let |z] = d(z,0) denote the geodesic distance of z from the
reference vertex o and let ¢(z) = f(|z]). .
Denote by py = exp (%" — 1) — 1 (k = 1,2,...) the zeros of f. Let

¢(z), for |z| < pi,
¢"(z)'{ 0, for |z| > ps.
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Then ¢ belongs to Lo. We will show that Dy(¢—¢x) — 0, s0 that ¢ € D((,” ).
Set ¥ = ¢ — ¢ and S(r) = E(r + 1)\E(r). Let [z,y] denote the
(unoriented) edge having z and y as endpoints. Then

(6) D)= Y. D Itr(=z) - r(w)lP.

r>pe—1 [z,y]€S(r)
We have, for |zl =7 > pi, lyl =7+ 1,

r+1 r+1
(7) [¥x() - )P < [ If(PIPdp < [ h(p)dp

where h(p) = (10p)~Plog™? p.
fpr—1<r<prand |z] =7, |y| = r+1, then ¢(z) = 0 = f(ps), s0
that

r+1 r+1
(8) [¥e(z) = ex)IP < [ 1F()IPdp < [ h(p)dp.

There exists a positive constant « such that, for large values of p and every p*
satisfying |p — p*| < 1, h(p)(h(p"))! < k.

Let, as in the preceding Lemma, e, denote the cardinality of E(r). Since
there are e, — e, edges in S(r), we have by (6), (7) and (8)

00
€ — €
< -p oril T o
Dy(tx) < 5(10) ,EE.I P loghr

so that D,(%x) — 0 as k — 0o by the Lemma. Therefore ¢ € D{P.

Now let p be any one-sided infinite (non-self-intersecting) path in I
starting at the reference vertex o. There exist two sequences, say p,, and py,,
tending to infinity, such that

|f(pn)l < 1/5, |f(om)| > 4/5.

Since | f(p1) — f(p2)| < (10)71|py — p2| for all positive p; and p,, there are
two infinite sequences of vertices of p, say Ty(n) and Zy(m), such that

|6(zk(n))| < 2/5, |¢(2k(m))| > 3/5.
Hence ¢(z) does not have a limit as z tends to infinity along the vertices of

any path in P,. By Proposition 3 the extremal length of order p of P, is oc.
But then, by Proposition 2, I" is p-parabolic. This concludes the proof. =

Remark. The simple random walk on I" mentioned in Section 1 is the
Markov chain with state space V and probability d;! of moving from z to a
neighbour y. It is easy to show, on account of a theorem of Lyons [L, p. 394],
that I' is 2-parabolic if and only if the simple random walk is recurrent. The
details of the proof are worked out in [So, Theorem 1].
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Hence, by our Theorem, if I has quadratic growth then I’ is recurrent.
This can be also deduced (with an argument similar to the one given in the
above Lemma) from Nash-Williams’ criterion for recurrence ([N-W, Theo-
rem 2]; see also the paper [McG]).
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