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SOME SUFFICIENT CONDITIONS
FOR REGULAR APPROXIMATE DIFFERENTIABILITY

BY

TIMOTHY ROUCH (BLOOMINGTON, INDIANA)

1. Introduction. In this paper we give sufficient conditions for a meas-
urable map f to be equivalent to one which is regularly approximately
differentiable a.e. on an open set G in n-space. We prove (Theorem 1 (a))
that one such sufficient condition is the following: for j =1, ..., n, the
map f is equivalent to a map g; which has an ordinary total differential
a.e. along almost every hyperplane orthogonal to the j-th coordinate axis.
In this connection, we point out that Fadell [4] has proved that if f is
continuous on @ and has an ordinary total differential a.e. along all hyper-
planes orthogonal to the coordinate axes, then f is regularly approxi-
mately differentiable a.e. in @.

We also prove (Theorem 1 (b)) that if p € [1, oo] and f has an L,-dif-
ferential a.e. with respect to all but one variable, then f has what we call
a regular approximate L,-differential a.e. (Definition 1).

These results, in conjunction with a theorem of A. Calderén and
A. Zygmund (see [10], p. 242), lead to another sufficient condition which
is given in terms of Sobolev norms of restrictions to hyperplanes (Corol-
lary 3). This represents an extension of a theorem of Goffman and Ziemer [7].

In a parallel development, we prove (Theorem 2) that a map is con-
tinuous a.e. on almost every hyperplane orthogonal to a coordinate axis
if and only if it is what we term regularly approximately continuous
a.e. (Definition 2).

2. Notation, definitions and lemmas. For weR", 7> 0 and E < R" let
w+nE = (w+nu: u e E}.
Let
C={ueR": [W|<1lforj=1,...,n}, K =2aC,
P; = {u e R": v = 0}
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and let {¢;};.,,... , be the standard basis for R". Write F; = P;nC. Let p
and r be m-tuples of extended real numbers. We shall write p > r whenever
pi>rforall ¢ =1,...,m. If teR, then p >t means p*>t for all i.

Let G be an open subset of R", and f a measurable map from @
into R™. If S = @, then

Iflls = sup{|f(%)|: « e 8}.

If § is measurable and p > 1, then
Ifllp,s = 08X £l 4 ¢

where |||, ¢ i8 the usual norm in L,(8),? € [1, oo]. If § is k-dimensional,
we mean for the norm to be taken with respect to k-dimensional Hausdorff
measure.

Definition 1. Suppose that L is a linear map from R" into R™ and
that w € @. Denote by A the affine map defined by A(u) = f(w)+
+ L(w—w). Then f is said to have L as

(a) a regular approximate differential at w (see [2], [3] and [9]) if

ap lim Il(f_A)/nilw+nK = 0’

P n—0+

(b) a regular approximate L,-differential at w if

aplimmax ==Y (£ — 4) )
70+ 1

We shall denote by D, L,D, RAD and RAL,D the spaces of measu-
rable maps f with the property that some (¥" a.e.) equivalent map ¢
has, a.e. in G, a differential, an L, -differential (see [10], p. 242), a regular
approximate differential and a regular approximate I, -differential,
respectively.

Again, respectively, we shall denote by HD and HL,D the spaces
of measurable maps f with the property that for each j there exists a g;
equivalent to f having a differential and an L, -differential, "' a.e.
along #' almost every hyperplane orthogonal to the j-th coordinate axis.

Obviously, for all p e[1, o],

=0.
't 049K

D c RAD c RAL,D and DcHDcHL,D.
By Fubini’s theorem,
Dc L,Dc RAL,D,
and by Hoélder’s inequality, if p > 7, then
L,Dc LD, ERAL,D<c RALD and HL,Dc< HLD.
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It follows from a theorem of Weiss [11], p. 103, that L,D < HL,D.
We shall prove (Theorem 1) that

HD = HL,D <« RAL D = RAD
and, in fact, that
HL,D <« RAL,D for all p e[1, oo].

In this context, the following example may be of interest. Let
F < [0,1] be a (generalized) Cantor set of positive measure and put
® = Xrx[,+ Then ¢ has an approximate differential a.e. (see [6], p. 212),
but ¢ ¢ RAL, D.

Definition 2. We say that f is
(a) regularly approximately continuous at w if
a‘phm ”f(w) _f”w+17K = O’

7—>0+

(b) regularly approximately L -continuous at w if

ap lim "f(w) _f”oo,w+f)K = 0.
-0+

Denote by RAC and RAL_C the spaces of maps equivalent to some
map which is regularly approximately continuous a.e. and regularly
approximately L_-continuous a.e., respectively. Clearly,

RAD <« RAC and RAL,D < RALC.

Denote by HC and HL,C the spaces of measurable maps f such that
for every j =1, ..., n there exists an equivalent map g; with the property
that, along %! almost every hyperplane orthogonal to the j-th axis, g,
is continuous and L.-continuous, #"~! a.e., respectively. That is, for
almost every w in almost every hyperplane,

hm"gj(w) _gj”w+qFj =0 and hm ”gj (w)_gj "oo,w+nFj = 0)
>0+ 70+ !
respectively.

HC contains the (n—1)-continuous maps of Goffman and Liu, for
example (see [6]).

We shall prove that HC = HL,,C = RAL_C = RAC (Theorem 2).

Definition 3. The upper boundary g = (g%, ...,9™), in the sense
of Blumberg [1], of a measurable map f is defined by

g'(w) = inf{a: (f)~}((— o0, a]) has w as a point of density}.

This is also called the approximate upper limit of f (see [6], p. 159).
Here we use the convention of [5] that inf@ = oo.

The proofs of the following lemmas are straightforward.

LEMMA 1. If w i8 a point of approximate continuity of f, then f(w)
= g(w) (see [8]).
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LEMMA 2. Suppose that w € G and that e> 0. If |g'(w)| < oo, then
{u: |g*'(w) —g'(w)| < &} has positive upper density at w. If |g°(w)| = oo,
then {u: |g*(u)| > 1/e} has positive upper density at w.

Lemma 2 is a somewhat strengthened version of a statement in [8].

Enlarging on an argument of Neugebauer [8] (see also [12]), we have

LeMMA 3. Suppose that w € G.

(a) If f has an L_-differential at w, then g has a differential at w.

(b) If f has a regular approximate L -differential at w and f(w) = g(w),
then g has a regular approximate differential at w.

Proof. We prove only part (b) here, since (a) appears in [8]. For
simplicity we take m = 1.

Fix w € @ with f(w) = g(w) and suppose that A is an affine map such
that

a‘plim ”(f_A)/ﬂ ”oo,w+r)K = 0.

10+ -

Let ¢ > 0. Since f is approximately continuous a.e. (being measurable),
by Lemma 1 there exists a set X < (0, 1) with right density 1 at 0 and
a set

N < U (w+ 1K)

neX
with the following properties:
(1) all points of X are points of density of X,
(2) for each n e X, #* ' (Nn(w+nK)) =0,
(3) lg(uw)—A(u)|/n < e for all we|J[(w+nK) ~N].

neX

Since f(w) = g(w), it suffices to show that N = @. Suppose not.
Then there exist ¢ > 0, ' € X and u' € (w+%'K)NN such that

lg(u’) —A(w)|[n' = e+o.

We suppose that |g(u')] < oo, the argument in the infinite case being
nearly identical. By Lemma 2, for each %,

By = {u: lg(u')—g(u)| < 1/k}

has positive upper density at «’. Hence there are a sequence ;| 0 and
a v > 0 such that, for all I,

LMu' + §0) v < LT [EN (w4 §0)]
< LY {n: #"[Epn(w+1K)]> 0} (n' — &, '+ &) #77(u' + §K),
so that {n: #" '[E,Nn(w+nK)] > 0} has positive upper density at #’.
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Since 7’ is a point of density of X, there exists a sequence {w,} con-
verging to ' with

(e} = U [(w+nK) ~N]
neX

such that g(u,) — g(»’'). But this would imply that

g(u)— A W)’ < e

a contradiction.
Similar reasoning leads to
LEMMA 4. Suppose that f 18 measurable on G and w € G.
(a) If f is L -continuwous at w, then g 8 continuous at w.

(b) If f is regularly approximately L ,-continuous at w and f(w) = g(w),
then g i8 regularly approximately continuous at w.

COROLLARY 1. (a) RAL_C = RAC.

(b) RAL_D = RAD.

Now we need a measurability lemma. For ¢ =1,2,... put

G, = {we@: dist(w, 0G) > 1/0}.
For all j set
Ay(o, k) = {wely: [f(w)—flw+y)<1/k
for ! almost every y € (1/o)F;}.
Let apD,;f* stand for the approximate partial derivatives of f. Set
E = {w € @: apD;f’(w) exist at w for all ¢ and j}.

For each w € E denote by L, the linear map with matrix [apD;f*(w)],
with respect to the standard bases. Note that F is measurable and that,
for almost all w € B, L, = apDf(w), the approximate differential of f
at w (see [5], p. 214).

Set

B (03 k) = {w e G,NE: |f(w+y)—f(w) — Ly,(y)! /Iyl < 1/k
for s#"~! almost every y € (1/0)F;}.
Also, for each w € E denote by T, the affine map defined by
Ty(u) = f(w)+ Ly (u—w).
For p €[1, o0) set

BY(0, k) = {w € GonB: max (A=Wt )T <1k

for all 1 €(0,1/0)}.



128 T. ROUCH

We have the following

LEMMA 5. Let f be measurable. For all j, o, k and p,

(a) A4;(0, k) is measurable,

(b) Bf (o, k) is measurable.

Proof. We shall prove only (b), the proof of (a) being similar. For
simplicity we assume that m = 1. First, let p = oo and fix j, o and k.

Let

Y = {(w,y) € EX(F; ~{0}): w+yecG}
and define { on Y by
E(w,y) = |f(w+y)—f(w)— L,/ lyl.
Then Y and ¢ are (£ x ™ !)-measurable. Let
8 ={(w,y)eY: wel,,ye(l/o)F; and {(w,y) < 1/k}.

Define a function %2 on E by

h(w) = #" Y|y e (F;~ {0}): (w,y) €8})).
Then 8 (and hence %) is #"-measurable. Therefore,

B(a, k) = h7Y{{(2/0)""1})

is Z"-measurable as required.
For the case p € [1, o), fix 1€(0,1/0) and define a measurable
function on § x (AF;) by

S, g) = | TN IO =L@ i (0,9) € T,
o it (w,9)¢ Y.

Then, by Fubini’s theorem, the function on 8 defined by
ol(w) — )_—[(n-—l)/P][ f Ifz('w, y)lpdm—l(y)]l/p
AF;

is measurable. Hence, by the dominated convergence theorem,

Bi(o, k) = () (697N[0,1/k]) = () (6)*([0,1/k])

Ae(0,1/0) reQ~(0,1/0)
is measurable.

Set
M; = k{jl L!l 4;(0,k) and N7 =kﬂl U1 B} (o, k).

Then M; is the set of w at which f|,, . is L,-continuous and N}
is the set of w € E at which the L,-differential of f|,, F; exists and is given
by the approximate partial derivatives of f at w.
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Set
n n
M = M; and N?=[)DN7.

j=1 j=1

We have

COROLLARY 2. (a) If fe HL,OC, then £"(G~ M) = 0.

(b) If pe[l, oo] and fe HL,D, then <" (G ~ N?) = 0.

Proof. First, in connection with part (b), we note that if a map has
l as an L,-differential at a point, then [ is also the approximate differential
at this point (see [12]). In turn, if a map has an approximate differential
a.e., then it has approximate partial derivatives a.e. (This follows, for
example, from a linear density argument and the fact that the map may
be approximated in a Lusin sense by continuously differentiable maps —
see [5], p. 228.) Furthermore, the approximate differential is given a.e.
by the approximate partial derivatives.

Let fe HL,D and apply the reasoning above to restrictions of f
to hyperplanes. In particular, it follows that f has approximate partial
derivatives a.e. in almost every hyperplane. Hence £"(G ~ E) =0
since the domains of the approximate partial derivatives of any measu-
rable map are measurable (see [56], p. 214).

The rest of the proof is an easy application of Fubini’s theorem and
Lemma 5.

We can now prove

LemMA 6. (a) HL,,C = HC.

(b) HL,D = HD.

Proof. By previous remarks we need only to prove that HL_C < HC
and HL,D < HD. Fix j. Let fe HL O (respectively, f € HL. D). Define
a map g; on C by letting g;(w) be the value of the upper boundary of f|,,, » )
at w. By Corollary 2 (a), f|w+1r, is " ! approximately continuous at w
for " almost every w € @. Hence, by Lemma 1, g; = f " a.e. We are
done by Lemmas 3 and 4, since g|, +Fy is continuous (respectively, has

a differential) whenever f|,,, 7 is L, -continuous (respectively, has an
L -differential).

3. The main theorems. Corollary 2 also leads to the following, the
proof of which was originally inspired by a similar argument, for n = 2,
in [3], p. 408.

THEOREM 1. (a) HD <« RAD.

(b) If p e [1, o], then HL,D < RAL,D.

Proof. By Corollary 1 and Lemma 6, it suffices to prove part (b).
Let m =1 and fix p € [1, oo]. Let fe HL,D so that £"(G@ ~ N*) = 0.
We show that f has L, (see the remarks before Lemma 5) as a regular

9 — Colloquium Mathematicum XLI.1
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approximate L,-differential a.e. in N”. Note that, as in the proof of Co-
rollary 2, the approximate partial derivatives ap D;f of f exist a.e. in G
and are measurable. Let ¢, 7 > 0.

Choose &’ such that 1/k’ < v. By Lemma 5, {Bf (0, k’)};.., i8 an in-
creasing sequence of measurable sets and, by Corollary 2,

™M@ ~\UBf(o,%')) =0 for each j.
o=1

Hence there exists ¢’ such that
LG ~Bf(d’, k') < e/2n  for each j.

Thus, by Lusin’s theorem, there exist a (closed) set
H < (\Bf(d', k)
i=1

and a 4 € (0, 1/0) such that £*(G ~ H) < ¢ and
lap D;f(v) —ap Dyf(w)] <= for all j,

whenever v, w €e H and [v—w| < 6. Let 8 be the set of points of H at
which H has linear density 1 in each coordinate direction.
For all we S let

P, ={ne(0,0): wtneel and |f(wtne)—f(w)—apD;f(w)n| <y
for all j}.

Then P, has right density 1 at 0 for every w € 8.
Fix we8,neP, and j. Let v=w+ ne;. Then, for all u € v+ 5k,

w—v| < q¥Vn—1/2
and
|f () —f(w) — L, (u—w)| < |f(w) —f(9) — Ly(u—0)| +
+ 1f(v) —f(w) — L, (v —w)| + | Ly (% — ) — Ly, (u —0)|.
Hence, by Minkowski’s inequality,
(21) " P If = Tylp, o pax < (20)" VP (70 + o+ w0 (n—1)Vn —1/2],

where T, (%) = f(w)+ L, (v —w), as before. Thus there exists a constant
y > 0 (depending only on n and p) such.that, for all w € § and all € P,

ﬂ_[‘"_l)/p] ”(f_Tw)/ﬂ”p,w+ﬂK < yT.

This proves the theorem since £"(GF ~ 8)< e, and ¢ and = are

arbitrary.
We obtain a stronger result in the case of continuity, namely:
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THEOREM 2. HC = RAC.

The analogous proposition for the case of differentiability remains
to be investigated.

In view of Corollary 1 and Lemma 6, Theorem 2 is an immediate
consequence of

LemmaA 7. HL,C = RAL_C.

Proof. HL,C =« RAL_C follows from a simplification of the proof
of Theorem 1.

To prove the reverse inclusion, we suppose that f¢ HL_C. Then
Z"(G ~ M) > 0, so there exists j such that

0 < 2@ ~ké QA,(G, k)= .zm(g fjl(a ~ 4y(a, B))).

Hence, by Lemma 5, there exists k' such that

-z"(rj(a ~ A,(0, k'))) > 0.
Set
X =6~ 40, k).

There is a closed set Y < X, #"(Y) > 0, such that f is continuous
on Y. Let Z be the set of points of ¥ at which Y has linear density 1 in the
j-th coordinate direction and let w € Z. Then there exists H, < (0, 1)
with right density 1 at 0 such that, for every » € H,,,

fw+7ne) —fw) <1/2k'  and  [f(w+n6) —Fllw s neginr; = LIK.
Hence
1F(#0) = flloowrnx > 1/2k’  for all n € H,,

80 f is not regularly approximately L -continuous at w. The lemma follows
by contraposition since #"(Z) > 0.

4. A corollary. We now mention some rclated re:ults regarding
Sobolev maps. Denote by W;,°° (@) the space of equivalence classes of maps
in I)*(@) whose distributional partial derivatives are functions in L (@)
(see [10]). We define HW*°(G) to be the space of (equivalence classes
of) maps whose restrictions to #* almost every hyperplane P, orthogonal
to a coordinate axis, are in Wi*(GNP). By Fubini’s theorem,

W (@) « HW(G).
Let V be the interior of C. Then, for p e (1, o0), the map g(w)

= (|ul| 4 |u?)~Y? is easily seen to be in HW,(V)~ W,(V). Accordingly,
the following is a slight generalization of a theorem in [7].
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COROLLARY 3. (a) If p > n—1, then
HWZ*(@) < RAD.
(b) If 1<p<n—1 and py =p(n—-1)/[(n—1)—p], then
HW}?(G) <« RAL,D.

Proof. By [10], p. 242, if p > n—1, then HW° c HD, and if 1 < p
<n—1, then HW° < HL,D. The corollary follows from Theorem 1.

Parts of this paper are based on work done at Purdue University
in the author’s Ph. D. Thesis. The author wishes to express his deep
gratitude to Professors E. Silverman, C. Goffman, C. Neugebauer and
R. Kaufman for the helpful suggestions and ecriticisms.
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