The maximum principle for the systems of the difference equations

by T. Styś (Warszawa)

In paper [1], p. 446, a discrete analogue of the strong maximum principle for a difference equation is presented. Here, it is generalized on a system of difference equations of the form (3).

Let Ω denote n-dimensional bounded domain of the Euclidean space E_n , consisting of a finite number of parallelepipeds with edges parallel to the hyperplanes of the coordinate system. Let us consider, in the domain Ω the system of equations of the form

(1)
$$\sum_{s=1}^{n} a^{s}(x) \frac{\partial^{2} u}{\partial x_{s}^{2}} + \sum_{s=1}^{n} B^{s}(x) \frac{\partial u}{\partial x_{s}} + C(x) u = F(x),$$

where $x = (x_1, x_2, ..., x_n)$, $u = (u_1, u_2, ..., u_p)$, $F = (F_1, F_2, ..., F_p)$, B^s , C, s = 1, 2, ..., n, are matrices of the dimension p. Assume, that the functions $a^s(x) > 0$, matrices $B^s(x)$, C(x) and vector F(x) are bounded in $\Omega \cup \Gamma$, where Γ is the boundary of Ω .

Let $ih = (i_1h_1, i_2h_2, ..., i_nh_n)$, where $i = (i_1, i_2, ..., i_n)$ is a set of integers, $h = (h_1, h_2, ..., h_n)$, $h_s > 0$, s = 1, 2, ..., n.

Introduce $\overline{\Omega}_h = \{ih \in \overline{\Omega}\}\ (\overline{\Omega} \text{ denotes the closure of the domain }\Omega).$ We shall call two points jh, kh, $j = (j_1, j_2, ..., j_n)$, $k = (k_1, k_2, ..., k_n)$ adjacent, if $\sum_{s=1}^{n} |j_s - k_s| = 1$. Then, internal point of the net $\overline{\Omega}_h$ may be defined as a point $ih \in \Omega$, whose all adjacent points belong to $\overline{\Omega}$. The set of the points, which belong to $\overline{\Omega}$, but are not internal points of the net $\overline{\Omega}_h$, will be called the boundary of Ω_h and denoted by Γ_h . The set of internal points of the net $\overline{\Omega}_h$ will be denoted by Ω_h . The value of the function v, defined in the point ih will be denoted by v_i .

Left side of the system (1) may be approximated by the following scheme

(2)
$$Lu_{i} \equiv \sum_{s=1}^{n} a_{i}^{s} \nabla_{s} \Delta_{s} u_{i} + \sum_{s=1}^{n} B_{i}^{s} \bar{\Delta}_{s} u_{i} + C_{i} u_{i},$$

where

$$ih \in \Omega_h$$
, $\nabla_s u_i = \frac{u_i - u_i^{s-1}}{h_s}$, $\Delta_s u_i = \frac{u_i^{s+1} - u_i}{h_s}$,

$$\overline{\Delta}_s u_i = \frac{1}{2} (\nabla_s + \Delta_s) u_i, \quad u_i^{s\pm 1} = u(i_1 h_1, i_2 h_2, ..., (i_s \pm 1) h_s, ..., i_n h_n).$$

Let $v_i = (v_{1i}, v_{2i}, ..., v_{pi})$ be solution of the system equations

(3)
$$Lv_i = F_i \quad \text{for} \quad ih \in \Omega_h ,$$

$$v_i = w_i \quad \text{for} \quad ih \in \Gamma_h .$$

where $\psi_i = (\psi_{1i}, \psi_{2i}, ..., \psi_{pi})$ is a given vector.

It is convenient to introduce following denotations

$$A_{i+}^{00} = A_{i-}^{00} = \frac{1}{2}C_i$$
, $A_{i+}^{l0} = A_{i-}^{l0} = \frac{1}{4}B_i^l$, $A_{i+}^{0l} = A_{i-}^{0l} = \frac{1}{4}(B_i^l)^T$, $A_{i+}^{ls} = A_{i-}^{ls} = -\frac{1}{2}a_i^lE\delta_{ls}$,

E is a unit matrix, l, s = 1, 2, ..., n, A^T is a transposed matrix A. $R_i = (v_i, v_i)^{1/2}$, $\eta_{i+}^0 = \eta_{i-}^0 = e_i$, where e_i is a unit vector, defined for $v_i \neq 0$, in direction of the vector v_i .

$$m{\Phi}_{i}^{+} = \sum_{l,s=0}^{n} \left(A_{i+}^{ls}\,\eta_{i+}^{l}\,,\,\eta_{i+}^{s}
ight)\,, \hspace{0.5cm} m{\Phi}_{i}^{-} = \sum_{l,s=0}^{n} \left(A_{i-}^{ls}\,\eta_{i-}^{l}\,,\,\eta_{i-}^{s}
ight)\,,$$

where $\eta_{i+}^s = \Delta_s e_i$, $\eta_{i-}^s = V_s e_i$, s = 1, 2, ..., n. D_{max} is a set of the points $ih \in \Omega_h$ where the function R_i attains its maximum.

Let us prove now the following

THEOREM 1. If the set D_{\max} is non-empty and $\Phi_i^+ + \Phi_i^- \leqslant 0$, $(v_i, F_i) \geqslant 0$ for $ih \in D_{\max}$, then $D_{\max} = \Omega_h$.

Proof. Let us perform following substitutions into the system (3)

$$\bar{\Delta}_s v_i = \bar{\Delta}_s(e_i R_i) = \frac{1}{2} (e_i^{s+1} \Delta_s R_i + R_i \Delta_s e_i + e_i^{s-1} \nabla_s R_i + R_i \nabla_s e_i) ,$$

 $\nabla_s \Delta_s v_i = \nabla_s \Delta_s (e_i R_i) = e_i \nabla_s \Delta_s R_i + \nabla_s e_i \nabla_s R_i + \Delta_s e_i \Delta_s R_i + R_i \nabla_s \Delta_s e_i .$

$$(4) \qquad \sum_{s=1}^{n} a_{i}^{s} e_{i} \nabla_{s} \Delta_{s} R_{i} + \\ + \sum_{s=1}^{n} \left[a_{i}^{s} (\nabla_{s} e_{i} \nabla_{s} R_{i} + \Delta_{s} e_{i} \Delta_{s} R_{i}) + \frac{1}{2} B_{i}^{s} (e_{i}^{s+1} \Delta_{s} R_{i} + e_{i}^{s-1} \Delta_{s} R_{i}) \right] + \\ + R_{i} \left[C_{i} e_{i} + \frac{1}{2} \sum_{s=1}^{n} B_{i}^{s} (\Delta_{s} e_{i} + \nabla_{s} e_{i}) + \sum_{s=1}^{n} a_{i}^{s} \nabla_{s} \Delta_{s} e_{i} \right] = F_{i}.$$

Multiplying both sides of the *l*th equation, l = 1, 2, ..., p, of the system (4) by the *l*th component of the vector e_i and taking a sum of all equations, the following equations may be obtained

(5)
$$\sum_{s=1}^{n} a_{i}^{s} \nabla_{s} \Delta_{s} R_{i} + \sum_{s=1}^{n} b_{i}^{s} \Delta_{s} R_{i} + \sum_{s=1}^{n} \overline{b}_{i}^{s} \nabla_{s} R_{i} +$$

$$+ R_{i} \Big[(C_{i} e_{i}, e_{i}) + \frac{1}{2} \sum_{s=1}^{n} (B_{i}^{s} \Delta_{s} e_{i}, e_{i}) + \frac{1}{2} \sum_{s=1}^{n} (B_{i}^{s} \nabla_{s} e_{i}, e_{i}) +$$

$$+ \sum_{s=1}^{n} a_{i}^{s} (e_{i}, \nabla_{s} \Delta_{s} e_{i}) \Big] = (e_{i}, F_{i}),$$

where

$$b_i^s = a_i^s(e_i, \Delta_s e_i) + \frac{1}{2}(B_i^s e_i^{s+1}, e_i),$$

 $\bar{b}_i^s = a_i^s(e_i, \nabla_s e_i) + \frac{1}{2}(B_i^s e_i^{s-1}, e_i),$

for $ih \in \Omega_h$, s = 1, 2, ..., n. Identity $(e_i, e_i) \equiv 1$ implies

(6)
$$(e_t, \nabla_s \Delta_s e_t) = -\frac{1}{2} [(\Delta_s e_t, \Delta_s e_t) + (\nabla_s e_t, \nabla_s e_t)].$$

Let us replace the expression $(e_i, V_s \Delta_s e_t)$ in equation (5) by the right-hand side of equation (6). Thus, we obtain

(7)
$$\sum_{s=1}^{n} a_{i}^{s} \nabla_{s} \Delta_{s} R_{i} + \sum_{s=1}^{n} b_{i}^{s} \Delta_{s} R_{i} + \sum_{s=1}^{n} \overline{b}_{i}^{s} \nabla_{s} R_{i} +$$

$$+ R_{i} \Big[(C_{i} e_{i}, e_{i}) + \frac{1}{2} \sum_{s=1}^{n} (B_{i}^{s} \Delta_{s} e_{i}, e_{i}) + \frac{1}{2} \sum_{s=1}^{n} (B_{i}^{s} \nabla_{s} e_{i}, e_{i}) -$$

$$- \frac{1}{2} \sum_{s=1}^{n} a_{i}^{s} (\Delta_{s} e_{i}, \Delta_{s} e_{i}) - \frac{1}{2} \sum_{s=1}^{n} a_{i}^{s} (\nabla_{s} e_{i}, \nabla_{s} e_{i}) \Big] = (e_{i}, F_{i}) .$$

Using the notation described above, equation (7) may be rewritten in the form

(8)
$$\sum_{s=1}^{n} a_{i}^{s} \nabla_{s} \Delta_{s} R_{i} + \sum_{s=1}^{n} b_{i}^{s} \Delta_{s} R_{i} + \sum_{s=1}^{n} \bar{b}_{i} \nabla_{s} R_{i} + (\Phi_{i}^{+} + \Phi_{i}^{-}) R_{i} = (e_{i}, F_{i}),$$

$$ih \in O_{k}$$

Therefrom

(9)
$$ar{L}R_{i} = \sum_{s=1}^{n} \left(\frac{a_{i}^{s}}{h_{s}^{2}} + \frac{b_{i}^{s}}{h_{s}} \right) R_{i}^{s+1} + \sum_{s=1}^{n} \left(\frac{a_{i}^{s}}{h_{s}^{2}} - \frac{\overline{b}_{i}^{s}}{h_{s}} \right) R_{i}^{s-1} + \\ + \sum_{s=1}^{n} \left(\frac{\overline{b}_{i}^{s}}{h_{s}} - \frac{b_{i}^{s}}{h_{s}} - \frac{2a_{i}^{s}}{h_{s}^{2}} \right) R_{i} + (\Phi_{i}^{+} + \Phi_{i}^{-}) R_{i} = (e_{i}, F_{i}) .$$

226 T. Styś

Let $D_{\max} \neq \Omega_h$. From the assumption it follows that the set D_{\max} is non-empty. Thus, there exists such a point $jh \in D_{\max}$ that at least in one point $kh \in \overline{\Omega}_h$ adjacent to point jh, $R_k < R_j$.

Let

$$egin{aligned} S &= \{1\,,\,2\,,\,...\,,\,n\}\,\,,\ S^{+} &= \left\{s\,\,\epsilon\,\,S\colonrac{a_{i}^{s}}{h_{s}^{2}} + rac{b_{i}^{s}}{h_{s}} > 0\,\,,\,\,ih\,\,\epsilon\,\,\Omega_{h}
ight\}\,,\ S^{-} &= \left\{s\,\,\epsilon\,\,S\colonrac{a_{i}^{s}}{h_{s}^{2}} - rac{ar{b}_{i}^{s}}{h_{s}} > 0\,\,,\,\,ih\,\,\epsilon\,\,\Omega_{h}
ight\}\,. \end{aligned}$$

Recalling the assumptions we see that equation (9) implies the following inequality

$$\begin{split} &(10) \quad LR_{j} < R_{j} \bigg[\sum_{s \in S^{+}} \left(\frac{a_{j}^{s}}{h_{s}^{2}} + \frac{b_{j}^{s}}{h_{s}} \right) + \sum_{s \in S^{-}} \left(\frac{a_{j}^{s}}{h_{s}^{2}} - \frac{\overline{b}_{j}^{s}}{h_{s}} \right) + \\ &+ \sum_{s \in S} \left(\overline{b}_{s}^{s} - \frac{b_{j}^{s}}{h_{s}} - \frac{2a_{j}^{s}}{h_{s}^{2}} \right) + \Phi_{j}^{+} + \Phi_{j}^{-} \bigg] \\ &= R_{j} \bigg[\sum_{s \in S^{-}} \left(\overline{b}_{j}^{s} - \frac{a_{j}^{s}}{h_{s}^{2}} \right) - \sum_{s \in S^{-}, S^{+}} \left(\frac{b_{j}^{s}}{h_{s}^{s}} + \frac{a_{j}^{s}}{h_{s}^{2}} \right) + \\ &+ \left(C_{j}e_{j}, e_{j} \right) + \frac{1}{2} \sum_{s \in S} \left(B_{j}^{s} \Delta_{s}e_{j}, e_{j} \right) + \frac{1}{2} \sum_{s \in S} \left(B_{j}^{s} V_{s}e_{j}, e_{j} \right) - \\ &- \frac{1}{2} \sum_{s \in S} a_{j}^{s} (\Delta_{s}e_{j}, \Delta_{s}e_{j}) - \frac{1}{2} \sum_{s \in S} a_{j}^{s} (V_{s}e_{j}, V_{s}e_{j}) \bigg] \\ &= R_{j} \bigg\{ \sum_{s \in S^{-}, S^{-}} \left[\frac{a_{j}^{s}}{h_{s}} (e_{j}, V_{s}e_{j}) + \frac{1}{2h_{s}} \left(B_{j}^{s} e_{j}^{s-1}, e_{j} \right) - \frac{a_{j}^{s}}{h_{s}^{2}} + \\ &+ \frac{1}{2} \left(B_{j}^{s} V_{s}e_{j}, e_{j} \right) - \frac{a_{j}^{s}}{2} \left(V_{s}e_{j}, V_{s}e_{j} \right) \bigg] + \sum_{s \in S^{-}, S^{+}} \left[-\frac{a_{j}^{s}}{h_{s}} (e_{j}, \Delta_{s}e_{j}) - \\ &- \frac{1}{2h_{s}} \left(B_{j}^{s} e_{j}^{s+1}, e_{j} \right) - \frac{a_{j}^{s}}{h_{s}^{2}} + \frac{1}{2} \left(B_{j}^{s} \Delta_{s}e_{j}, e_{j} \right) - \frac{a_{j}^{s}}{2} \left(\Delta_{s}e_{j}, \Delta_{s}e_{j} \right) \bigg] + \\ &+ \left(C_{j}e_{j}, e_{j} \right) + \frac{1}{2} \sum_{s \in S^{+}} \left[\left(B_{j}^{s} \Delta_{s}e_{j}, e_{j} \right) - a_{j}^{s} \left(\Delta_{s}e_{j}, \Delta_{s}e_{j} \right) \right] + \\ &+ \frac{1}{2} \sum_{s \in S^{-}} \left[\left(B_{j}^{s} \Delta_{s}e_{j}, e_{j} \right) - a_{j}^{s} \left(V_{s}e_{j}, V_{s}e_{j} \right) \bigg] \bigg\} \\ &\leq R_{j} \bigg\{ \sum_{s \in S^{-}} \left[\frac{a_{j}^{s}}{h_{s}} \left(V_{s}e_{j}, V_{s}e_{j} \right) \right]^{1/2} + \frac{K_{s}}{h_{s}} - \frac{a_{j}^{s}}{h_{s}^{2}} + \\ \end{split}$$

$$\begin{split} &+K_{s}(\nabla_{s}e_{j},\,\nabla_{s}e_{j})^{1/2}-\frac{a_{j}^{s}}{2}(\nabla_{s}e_{j},\,\nabla_{s}e_{j})\bigg]+\\ &+\sum_{s\,\epsilon\,S-S^{+}}\bigg[\frac{K_{s}}{h_{s}}-\frac{a_{j}^{s}}{h_{s}^{2}}+\frac{a_{j}^{s}}{h_{s}}(\varDelta_{s}e_{j},\,\varDelta_{s}e_{j})^{1/2}+\\ &+K_{s}(\varDelta_{s}e_{j},\,\varDelta_{s}e_{j})^{1/2}-\frac{a_{j}^{s}}{2}(\varDelta_{s}e_{j},\,\varDelta_{s}e_{j})\bigg]+\\ &+K_{0}+\sum_{s\,\epsilon\,S^{+}}\bigg[K_{s}(\varDelta_{s}e_{j},\,\varDelta_{s}e_{j})^{1/2}-\frac{a_{j}^{s}}{2}(\varDelta_{s}e_{j},\,\varDelta_{s}e_{j})\bigg]+\\ &+\sum_{s\,\epsilon\,S^{-}}\bigg[K_{s}(\nabla_{s}e_{j},\,\nabla_{s}e_{j})^{1/2}-\frac{a_{j}^{s}}{2}(\nabla_{s}e_{j},\,\nabla_{s}e_{j})\bigg]\bigg\}\,, \end{split}$$

where

$$K_0 = n \max_{l,s} \max_{ih \in \overline{\Omega}_h} |C_i^{ls}| \;, \;\;\;\; K_s = \frac{n}{2} \max_{l,r} \max_{ih \in \overline{\Omega}_h} |B_i^{slr}| \;.$$

Let us consider, the following set of auxiliary functions

$$G_i^s(x) = \left(K_s + \frac{a_i^s}{h_s}\right)x - \frac{a_i^s}{2}x^2 + \frac{K_s}{h_s} - \frac{a_i^s}{h_s^2}, \quad H_i^s(x) = K_s x - \frac{a_i^s}{2}x^2,$$

s = 1, 2, ..., n.

From (10) it may be concluded, that

$$(11) \quad \bar{L}R_{j} \leqslant R_{j} \Big(\sum_{s \in S-S^{+}} G_{\max}^{s} + \sum_{s \in S-S^{-}} G_{\max}^{s} + \sum_{s \in S^{+}} H_{\max}^{s} + \sum_{s \in S^{-}} H_{\max}^{s} + K_{0} \Big) ,$$

where

$$G_{ ext{max}}^s = \max_{-\infty < x < +\infty} G_j^s(x) = -rac{a_j^s}{2h_s^2} + rac{K_s^2}{2a_j^s} + rac{2K_s}{h_s},$$
 $H_{ ext{max}}^s = \max_{-\infty < x < +\infty} H_j^s(x) = rac{K_s^2}{2a_j^s}.$

It is easy to see that the right-hand side expression of the inequality (11) is negative for sufficiently small h_s .

Let $S^+ = S^- = S$. Then equation (9) (cf. [1], p. 446) implies the following inequality

(12)
$$\vec{L}R_j < (\Phi_j^+ + \Phi_j^-)R_j \leqslant 0.$$

If $S^+ \neq S$ or $S^- \neq S$, then from inequality (11) immediately follows (13) $\bar{L}R_i < 0$.

228 T. Styś

On the other hand, we have $\overline{L}R_1 \geqslant 0$, which contradicts (12) and (13). Thus, we conclude that the assumption $D_{\max} \neq \Omega_h$ was false and this terminates proof of Theorem 1.

We shall prove, that if the matrix C satisfies the condition

$$(C_i v_i, v_i) \leqslant -\mu(v_i, v_i), \quad ih \in \bar{\Omega}_h,$$

where $\mu \geqslant \frac{\overline{K}n}{4a}$, $\overline{K} = \max_{s} K_s^2$, $a = \min_{s} \min_{x \in \overline{\Omega}} a^s(x)$, then

$$\Phi_i^+ + \Phi_i^- \leqslant 0 \quad \text{for} \quad ih \in \bar{\Omega}_h$$
.

Namely

$$(14) \qquad \Phi_{i}^{+} + \Phi_{i}^{-} = (C_{i}e_{i}, e_{i}) + \frac{1}{2} \sum_{s=1}^{n} \left[(B_{i}^{s} \Delta_{s}e_{i}, e_{i}) - a_{i}^{s} (\Delta_{s}e_{i}, \Delta_{s}e_{i}) \right] + \\ + \frac{1}{2} \sum_{s=1}^{n} \left[B_{i}^{s} \nabla_{s}e_{i}, e_{i} \right) - a_{i}^{s} (\nabla_{s}e_{i}, \nabla_{s}e_{i}) \right] \\ \leqslant -\mu + \frac{1}{2} \sum_{s=1}^{n} \left[K_{s} (\Delta_{s}e_{i}, \Delta_{s}e_{i})^{1/2} - a(\Delta_{s}e_{i}, \Delta_{s}e_{i}) \right] + \\ + \frac{1}{2} \sum_{s=1}^{n} \left[K_{s} (\nabla_{s}e_{i}, \nabla_{s}e_{i})^{1/2} - a(\nabla_{s}e_{i}, \nabla_{s}e_{i}) \right].$$

The function $H_i^s(x) = K_s x - ax^2$ attains its maximum equal $K_s^2/4a$. Hence, inequality (14) implies

$$\Phi_i^+ + \Phi_i^- \leqslant -\mu + \frac{\overline{K}n}{4a} \leqslant 0 \quad \text{for} \quad \mu \geqslant \frac{\overline{K}n}{4a}.$$

THEOREM 2. If v_i is a solution of the system (3) and $\Phi_i^+ + \Phi_i^- \leq 0$ for $ih \in \Omega_h$, then v_i satisfies the inequality

$$(16) \qquad (v_i, v_i)^{1/2} \leqslant K[\max_{ih \in \overline{\Omega}_h} (F_i, F_i)^{1/2} + \max_{ih \in \Gamma_h} (v_i, v_i)^{1/2}], \quad ih \in \overline{\Omega},$$

where the constant K > 0 does not depend on h.

This theorem will be proved with the aid of the following

LEMMA (cf. [2], p. 328). If v_i is a solution of the system (3) and the function g_i conforms to the assumptions

(i)
$$-\overline{L}g_{i} \geqslant \max_{ih \in \overline{\Omega}_{h}} (F_{i}, F_{i})^{1/2} \quad \text{for} \quad ih \in \Omega_{h} ,$$

(ii)
$$g_{i} \geqslant \max_{ih \in \Gamma_{h}} (v_{i}, v_{i})^{1/2} \quad \text{for} \quad ih \in \Gamma_{h},$$

then

$$(v_i, v_i)^{1/2} \leqslant g_i \quad \text{for} \quad ih \in \overline{\Omega}_h$$
.

Proof of lemma. Let $z_i = R_i - g_i$, $R_i = (v_i, v_i)^{1/2}$. From (i) and equation (9), it follows that

$$\bar{L}z_i = \bar{L}R_i - \bar{L}g_i = (e_i, F_i) - \bar{L}g_i \geqslant 0$$
 for $ih \in \Omega$.

Thus, the function z_i conforms to the maximum principle (cf. Theorem 1). From (ii) it follows that

$$R_{i}-g_{i}\leqslant 0 \quad ext{ for } \quad ih \; \epsilon \; \Gamma_{h} \; .$$

Thus

$$R_i \leqslant g_i \quad \text{ for } \quad ih \in \bar{\Omega}_h$$

q.e.d.

Proof of Theorem 2. Assume, that the domain Ω belongs to the half-space $x_1 \ge 0$ it could be always achieved by means of suitable choice of the coordinate system. Let

$$g_i = [\exp(a\overline{x}_1) - \exp(ax_1)] \max_{ih \in \overline{\Omega}_h} (F_i, F_i)^{1/2} + \max_{ih \in \Gamma_h} (v_i, v_i)^{1/2},$$

where $\bar{x}_1 \geqslant x_1+1$, $\bar{x}=(\bar{x}_1,\bar{x}_2,...,\bar{x}_n)$ is a fixed point in the space E_n . Now, we shall show that the function g_i satisfies the assumptions of the lemma. From the definition of the function g_i it follows

$$\begin{split} \frac{g_{i}^{s+1}-g_{i}^{s-1}}{2h_{s}} &= \begin{cases} -a\exp{(ax_{1})}\max_{ih \in \overline{\Omega}_{h}}(F_{i},F_{i})^{1/2} + O(h_{1}^{2}) & \text{for} \quad s=1 \;, \\ 0 & \text{for} \quad s=2\,,3\,,...\,,n; \\ \frac{g_{i}^{s+1}-2g_{i}+g_{i}^{s-1}}{h_{s}^{2}} & \\ &= \begin{cases} -a^{2}\exp{(ax_{1})}\max_{ih \in \overline{\Omega}_{h}}(F_{i},F_{i})^{1/2} + O(h_{1}^{2}) & \text{for} \quad s=1 \;, \\ ih \in \overline{\Omega}_{h} & 0 & \text{for} \quad s=2\,,3\,,...\,,n \;. \end{cases} \\ &= \begin{cases} -a^{2}\exp{(ax_{1})}\max_{ih \in \overline{\Omega}_{h}}(F_{i},F_{i})^{1/2} + O(h_{1}^{2}) & \text{for} \quad s=2\,,3\,,...\,,n \;. \end{cases} \\ &+ Ad \; (i): \\ -\overline{L}g_{i} &= \left[\exp{(ax_{1})}\left(a_{i}^{1}a^{2} + (b_{i}^{s} + \overline{b}_{i}^{s})a\right) - (\Phi_{i}^{+} + \Phi_{i}^{-})\left(\exp{(a\overline{x}_{1})} - \exp{(ax_{1})}\right)\right] \times \\ &\times \max_{ih \in \overline{\Omega}_{h}}(F_{i},F_{i})^{1/2} - (\Phi_{i}^{+} + \Phi_{i}^{-})\max_{ih \in \Gamma_{h}}(v_{i},v_{i})^{1/2} + O(h_{1}^{2}) \\ &\geqslant \max_{ih \in \Omega_{h}}(F_{i},F_{i})^{1/2} \;, \end{cases} \end{split}$$

where a sufficiently large number.

Ad (ii):

$$g_i \geqslant \max_{ih \in \Gamma_h} (v_i, v_i)^{1/2}$$
 for $ih \in \Gamma_h$.

230 T. Styś

Thus, lemma implies

$$(v_i, v_i)^{1/2} \leqslant [\exp(\alpha \bar{x}_1) - 1] \max_{ih \in \bar{\Omega}_h} (F_i, F_i)^{1/2} + \max_{ih \in \Gamma_h} (v_i, v_i)^{1/2}.$$

The inequality (16) follows immediately from (17), e.q.d.

References

- [1] И. С. Березин, Н. П. Жидков, Методы вычислений, т. II, Москва 1962.
- [2] Р. Курант, Уравнения с частными производными, Москва 1964.

Reçu par la Rédaction le 12. 10. 1965