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1. Introduction

In this paper we consider the existence, uniqueness and regularity of solutions
of the following problem

VA (x)Pu,=f, in Q,s=1,2,
(L.1) AVu-n=1y, on S, s=1,2,
(4 Vu il,=0, [u]|,=0,

in a bounded domain Q2 < R", n 2 2. The domain Q is divided into two parts
Q,, 2, (open subsets of 2, Q = Q, UR,) by a surface I" (I' = Q, n Q,) passing
through an edge L = 0Q, so that there are two-surface angles between I and
0Q. We assume that 0Q, =S, uT, s =1, 2, and that the two-surface angles
between I and S, are equal to 3, = 9,(x), xeL, s = 1, 2. Quantities labelled
with index s are considered in the subdomain Q_, s =1, 2. By [ ]lr we denote
the jump across I and by 7 the unit outward vector normal to the boundary
02 =S, uS, (orto I'). For the ordinary transmission problem L is not an edge
on ¢Q; however, L is an edge for Q, s=1, 2.

Finally we assume that A* = (ai;); j=1,..., S = 1, 2, are symmetric matrices
such that

.....

(1.2) apd? < Y apdl <y, VEeR, xeQ, s=1,2,
iLj=1
where af), bj are positive constants. Let q, = min {a}, a3}, b, = max {b}, b3}.
Then the equations (1.1), are uniformly elliptic.
Physically Q2 may consist of two kinds of elastic media separated by I.
The paper is organized in the following way. In Section 2 we introduce
necessary notation and auxiliary results (various types of weighted spaces;
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embedding theorems). In Section 3 we prove the existence, uniqueness and
regularity of solutions of the problem (1.1) on a plane in the case of constant
matrices 4%, s = 1, 2, in angular domains Q,; = d, , s = 1, 2. First we show the
existence in homogeneous spaces Hj (see Theorem 3.3), then in weighted
Sobolev spaces W) (see Theorem 3.7). Using the Fourier transformation with
respect to variables in directions parallel to the edge M of dihedral angles 2,
s = 1, 2 (see Section 2), we extend in Section 4 the statement of Theorem 3.7 to
the case of Q, = %;,, i =1, 2 (see Theorem 4.2). In Section 5 we prove the
existence, uniqueness and regularity of solutions of the problem (1.1) with
variable coefficients af; = a};(x), s = 1,2,i, j=1,...,nin £, = Py, i = 1,2, by
the method of successive approximations (see Theorem 5.2). Finally, in Section
6, using the existence of weak solutions of the problem (1.1) in a bounded
domain and a suitable partition of unity we show the existence of solutions of
the problem (1.1) in W} spaces (see Theorem 6.3).

In this paper the coefficients of the asymptotic expansion in a neighbour-
hood of the edge (sec Theorem 3.3) are not given. Results of this type have been
obtained for boundary value problems to elliptic equations (see [7], [8]).

The paper mostly relies on methods and results of [10]. The transmis-
sion problem with the Dirichlet conditions on S,, s =1, 2, was considered
in [5].

Acknowledgement. The author is very indebted to Professor E. San-
chez-Palencia for introducing to this problem and encouragement to work
on it.

2. Notation and auxiliary results

At first we introduce necessary notation. Let r, @ be the polar coordinates in
the plane; let d; = R? be an infinite angle r > 0, pe{p,, @,) of size § = @, —,;
DY Vs, Vo, We denote the sides of d, determined by ¢ = @, and ¢ = ¢,,
respectively; @4 = dg x R""% is the dihedral angle in R", n > 2, with sides
Fp=7,xR ™% i=12 and with edge M =T, nT,,

The points of 2, will be denoted by x = (¥, z), where x'edy, ze R"™ 2,

By £(x)e C§ (R") we denote a function depending monotonically on |x|
equal to 1 for |x| £1/2 and 0 for |x| > 1.

Now we introduce some function spaces involving functions delined on
a domain %, (which can be defined similarly in the case of d, < R?) [10], [117:
H (D) is the space of functions with the finite Dirichlet integral

tllea) = ([ [Ful? dx)!?;
Do

Wi (D), Hi(2,), IX,(2,), 0 < ke Z, ueR, are the closures of smooth functions
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with compact supports, in the norms (in the case of H% we only consider
smooth functions which vanish in a neighbourhood of the edge M):
lull o =(3 § P Diul®dx)'?,

Wul@s)  Lzk 95

lu]l x :( Z jlelz(#*(k—'l‘ai))ID;u]de)ljz’

Hu@s) gk 9

lul o =(X 11 I1Diul? dx)*2.
lal=k 25
For k =0 these spaces coincide and are equal to L,(2D,).

For k>0, elements of W) (2,), H,(Z,), L, (2;) leave traces on any
(n— 1)-dimensional plane I' passing through the edge. These traces belong to
the spaces Wr~Y2(I), H™Y3(I), L '2(I"), respectively, with the following
norms:

Il -
»®

= s+ ¥ [IDuRE}dE,

(I laj<k-1T

u _ = llu _ + Daul 2(u—k+|a|)+1d
[ |le vz f ||L: v, Y [ID*uP &} ¢,

falSk-1T

dn \1?
Il -1, = (M T j g e J ID“u(é+n)—D“u(cf)|2W) ,
r K, (@

where & =(&,, &, ..., &) are cartesian coordinates on [I' such that

r'={¢eR"™%: & >0} and K, (&) = {nel: Il < ¢&,).
Let us first recall theorems about traces for elements from the spaces just
introduced. Let X} (2,) denote one of the spaces Wi(Z;), Hj(Zs), L.(Dy).

According to [10], [11], we have

THEOREM 2.1. Let ue X%(92y), 0<keZ, peR, |o|<k. Then D*u|,
e X%~ l-12(1) gnd

(2.1) ||D’ullxta|¢|-uzm <clull

Let there be given functions ¢ € X7 '>(I), j = 0, ..., k—1. Then there exists
a function ue X% (D,) such that -

k=1
(2.2) lull o <c 2 Mol i-smrrz .
j=0 XH (

Xu(@y) TI)

We denote H*(2,) = W5 (2,).
Finally, we define the space W}(£2) by means of the norm

(2.3) lull « ={2 fo*()ID*ul*dx)!?,

Wul® k0
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where g (x) = dist(x, L) (Lis an edge) and we can introduce, as above, the space

of traces W}~ 12(0Q).
For convenience we also introduce the space A%*2(%,) by the norm

u = D%y + 1|1 sieper-
| ”Ain . i ||W:;(%) 1]l s

@
For an arbitrary ve H*(2,) the interpolation inequality

(24) [ o)X dx < 249 o2, +ce” oliEy@g)
B Lo(2g)

is valid for ne(0, 1) and for every &> 0.
Let us further introduce the space &%(d;) by the norm

2 —_ 2i 2
23) b, = Y £ Nl

i<k
By the Parseval equality we have

(2.6) lull? = § a3 dE,

Lu(@s)  ga-2  6ulds)

where # is the Fourier transform of u (see the proof of Theorem 4.2).
We shall need the following Hardy inequality (see [3], § 4, [1], Ch.1). Let
JeLi(dy) be such that f(0)=0 and v <0; then

" 1/2 1 " 12
@7) (flfﬁrz""d-r) s;;(f If,lzrz”“dr) :
0 0

and if f(c0) =0 and v >0, then

. 1/2 1 - 1/2
(28) (Jlﬂz ).2\-— 1 d)) < ;(J‘!frlz rZ\r+ L d?)
0 0

Let f(x), xed,, be an arbitrary function. By /¥ (x) we denote the partial
sum of the Taylor series with respect to x':

@) a2

(2.9) SO = ) D% f(¥)=0

ta, !’
la) =a -tz < j Xy 0y

Similarly, for a function ¢ given on y;, we define
i
(2.10) e (=) ——0 re.

By the Hardy inequalities (2.7), (2.8) and in view of (2.9), (2.10) we have (see
[14], Ch.2, Lemma 2.1)

LEMMA 2.2. Let uel* (dy), ueR, 1 <keZ and pu+1320.
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(a) Let s=pu+1 be a noninteger. Then there exists je Z such that
k—pu—2<j<k—p—1, u—uPeH:(d,) and

2.11 u—u < cllu .
(2.11) [l ”H:(ds)\ I ||L:(ds)

(b) Let s=u+1 be an integer. Let D**ueL,_.(dg), j = k—s. Then
u—u~ Ve Hi(d,) and

2.12 u—uyv-v <c(|u D¥ sy )
(2.12) I lle(ds) (|l ||Lr;(d9)+|| Iz, - sds))

We will also need the following type of the Hardy inequality (see [3], § 4):

(2.13) [l sam < il o H—k> =L,

3. Existence of solutions to the problem (1.1)
with constant coefficients in a cone on a plane

In this section we show the existence, uniqueness and regularity of solutions of
the problem (1.1) which we rewrite in the following form:

a1 Liug= ~AV' V'u, = f in dyg, s=1, 2,
' Fou,= A V'ug Aly= -1y, = ¥4 on y,s=1,2,
AI'V'ul'ﬁ|1p=0=AZ'V’uz'ﬁlqﬁo’ Ule=0 = Uylp=0, OR Yo,
where

aS bS
A* = (aiij=12= (b . ), s=1,2,

are constants, dg, = R” is the angle between y; and y,, s =1, 2. In the polar
coordinates r, ¢ on R2, y,, 7o, ¥, are determined by ¢ = —9,, 0 =0, ¢ = 9,,
respectively; or equivalently, by x, = —tan9,x,, x, =0, x, = tan$, x,,
respectively. By 7 we denote the unit outward vector normal to the
boundary; so

Al,, =(~sind,, —cos ¥,), 7al,,=(0,1), 7l,,=(-sinT,, cos,).

o (22 ~
S \ax, ax,)

pi=detd*=a,c,—b?>0, s=1,2.

We denote

By ellipticity we have

I8 -- Banach Cenler t. 24
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Using the polar coordinates, we write (3.1) in the form

o, ity | Oy, Oty sy 07 1y 2y, L0 0%,
L,tr, qDMS_?(TJ-}——Z@(;J roor a(p ﬂ* or? 28q02 = J
ln dsss s = ]-: 2,
(3.2)
Oy Oty 05 Ol —y on s=1 2
( (p)u = 2 (31' r 0cp - ¥so '))59 ’ s
Fi(r, p)u, = Fy(r, Qu,, U = Uy, ONn g,
where
a, = a,sin? ¢ —b,sin 2¢ +c,cos” @,
(3.3)

B, = a,cos? ¢+ b,sin 2¢ +c,sin’ @,

aS’P‘P =2 ([))s - as)! ﬁsrp sq-: 3

s=1,2, and F(r, o)u,= A*-V'un|,-, where 71 = (—sin @, cos @).
Introducing the new variable t = —Inr and applying the Fourier transfor-
mation

1
(A, cp)=.\/ﬂj e"*u(t, p)dr

we replace problem (3.2) by
Lo, ) ¥, = o iy + 0ty (1 +0) s+ [(B,—~ ) o+ B 0™ ]

~

—(—e¥f) = —F in0,s=12,
(34)
Fy(o, @), = o i, + 300, i

=(—eY) =P for ¢ =(—109,s=1,2,

~

F (e, )i, =2 F,(0, @)i,, i, =1, for =0,

where ¢ =ik, 0, =(—9,,0), 8, =(0, 9,).

We treat the homogeneous problem (3.4) as a nonlinear eigenvalue
problem. According to considerations in [7], knowing that in the case of
diagonal matrices A* = u (§ 1), s =1, 2, the explicit form of eigenvalues and
eigenvectors can be found (see [12]), we may assume the existence of
eigenvalues and eigenvectors for (3.4) in the form

(3.9) 0 Pui @), k=0, F1, ¥2,...,s5=1,2,
i, 1s the multiplicity of the eigenvalue o). For ¢ = 0, instead of (3.4) we have

aS ﬁS(l”f’ +a-’“ﬂ a-"l’ = 0’ in 035 §= 1! 23
(3.6) ﬁ-"’ﬂ =0 for o =(—1) '95" s=1,2,

CilUyy, =Cyllyy, u,=1u, for =20,
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which implies that
(3.7) i, = i, = const

is the eigenvector.
To find solutions of the homogeneous problem (3.4) we introduce new

variables (see [2], part 1, § 25.1)

o (1+0)/2
(3.8) b, =1, (C—’) , §=1,2,
so that instead of the homogeneous problem (3.4) we have
5s¢ql+gs(o-, (p)ﬁs =0 in 03’ s = 1, 2,
(3.9) oy U, — 30,0, = 0 for o =(~-1y3, s=1,2,
oy Typ— 30y, 0y = 0y 0y =305, 7,, 7, =18,, for ¢ =0,
where
@10} g q‘o)=%“““"’”ﬁ‘“z—(l+a)2°‘—‘2£°—1+a(ﬁ)
o, 4 o 2 %/
o’ 2 L, 2
=1 (4o, i, — g, i (0tsp — Aot B+ 40ts)
P 1
—-d_sia.z-i-d_sz— .s—a.g)»
(3.11) Oglp=o = C5y  Usplp=0= —2b, s=1,2.

To define weak solutions and to prove the existence of solutions to the
problem (3.4) we need the following

LEMMA 3.1, Let Yy, e H" 1712 (), 5 =0, 1,2, 2 < keZ, peR. Then there
exist functions v.e H:(dy), s =1, 2, such that

A5 Vo m=1, ony,s=1,2,

G L2} s A2 .
AV Vv A=AV, 4y, vy=v, on ¥y
2 2
3.13 " <¢ K-t-1/2
(3.13) Tl < T Wi

The converse is also valid. Let v.e Hi (dy ), s = 1, 2; then y determined by (3.12)
belong to HX™ '~ V2(y), s =0, 1, 2, and
2

2
(3.14) Z ”ll/s”Hk—l—l/Z £c Z ”U_\” K .
s=0 Lot

9 =1 Huls)

The proof of this lemma is omitted because it is a simplified version of the
proof of Lemma 4.1.
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Now, using this lemma we can consider the problem (3.4) with ¥ =,
s =1, 2, This problem will be denoted by (3.4).

To define a weak solution to the problem (3.4) we multiply (3.4) by &, and
integrate over #,. Summing over s we get

2

(315) - E j ;(‘o(p s(p 1+0-)u54)+[(ﬁ )U+/3§0'2] t"is)ﬁs= Z IFsﬁs’
s=1U0g s=186;

where # denotes the conjugate transposed element to v. Integrating by parts in

(3.15) and using (3.4),; we get

(3.16) Z [ gty + S0, 11, 05— Z | Gots, s, + B, 07 ) T, [ F,
s=1 0g s=1080¢ 10

Therefore, by a generalized solution to the problem (3.4) we mean functions
d.eH'(0), a=1,2, which satisfy the identity (3.16) for every v,e H'(0,),
s=1, 2.

To find the adjoint operator to the operator of problem (3.4)' we integrate
by parts in (3.16), thus obtaining

Lﬂ;(a’ (P)Us = asvswp-i_(l_&)aswvstp+[—(ﬁa_as)&-i'ﬁs&z] U, = —ﬁs
ind,s=1,2,

an

(3.17)
F¥ (o, o)v, = o v,,— 4600, =0 for o =(—1y8, s=1,2,
Fi(o, o)v, = F3(o, p)v,, v, =0, for ¢ =0.
Using the notion of weak solution (3.16) we have
Tueorem 3.2. Let F e H*(0), s=1, 2, and let o be different from o,

k=0, F1, F2,..., which occur in (3.5). Then there exists a unique weak
solution i, of (3.16) which belongs to H**2(0,), s = 1, 2, and satisfies the estimate

2

GB18) Y (v 20y +IAP* T2 L 0,)

2
< Z ("Fs”fl"(ﬂs)+ |'1|2k ”anlz,;(es))-
s=1

where lo| = |4].

Proof. We introduce the space H'(6) = H*(0,)® H'(0,) with the scalar
product

2
(319) (U, V)H‘(ﬂ) = Z I(asusrp 5sqi+usﬁs)a
s=10s
where U =(u,,u,}, V=(v,,v,), and by ellipticity (see (1.2)) we have

ap So, < by, ap <P, <bh, s=1, 2. Adding and subtracting the term
t—l)z - [u to (3.16) we get
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(3200 (U, Mg+ A, U, M= (0> + 0BT, Vigg = (F, Ve,

where & = (F,, F,), and by the Riesz theorem we have

2
(A; Ua V)HI(B) = Z j[%o-astp (ﬁsﬁw_aswﬁs)"'(t— l)ﬁsvs]»

s=10;s

321 ~ 2
( ) (BU, V)Hl(g) = Z jﬁsﬁs,

s=108;

2
(y, V)Hl(g) = Z Iﬁsﬁs.

s=1 0

By embedding theorems the operators A,, B are compact and continuous.
Moreover, (3.20) can be written in the operator form

(3.22) U+A4,0~(c*+1)BU = #.
Assuming that ¢ i1s such that
(3.23) 101z +(4. 0, Darey = 510116y,

we have the existence of the operator (I +4,)7!. To satisfy (3.23) we write

(3.24) [ zad i )> + (=) d)* = Lelol* (supla,l)® { ld,1>+(20)7 " [ lif*.
0, g,

05 05
Putting

ap

&= —5r—3
|o12 (sup le,l)

8,

and
o1 (sup lesal)®

3.25 te —9 4
(3.25) o +3

we obtain (3.23). For ¢ satisfying (3.25) we write (3.22) in the form (see [4, 9])
(3.26) U— (a2 +0)U+A) 'BU=(I+A) ' &.
For ¢ # o, (see (3.5)) the homogeneous equation (3.26) (with # = 0) has no

solutions, so that [|(I +4,) || < ¢/(e*+1), and by the Fredholm theorem we
get the existence of a unique solution to the equation (3.26) and the estimate

~ C ~
||§”H1(e) == “F"Lz(e)-

327 Tive <
(3.27) 1U o 21

g*+1
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Returning to (3.4), we have the existence of solutions of the problem (3.4) such
that #,e H*(0,), s =1, 2, and

2 . 2 .
(328) Y (181 E20y +IAP N Fray + 1A NN E ) < € Y 1F L 00
s=1: s=1

Continuing our considerations we are able to show that Z,e H**2(0), s = 1, 2,
and (3.18) is satisfied.. m

Integrating (3.18) with respect to A along the line ImA =h, where
h=—u+k+1, h+#0,i=0, F1,..., and o, are the eigenvalues in (3.5), and
repeating the considerations from [3] we derive

THEOREM 3.3. Let o, be as in (3.5) and suppose that
(3.29) o, #k+1—yu,

where 0 < keZ, ueR. Let [,eHi(dy), w,eH; ' (y,), s =12, 5 =0,1,2
Then there exists a unique solution of the pl oblem (3 1) such that
ueHﬁ”(dg) s=1, 2 and

2
(330) Zn oo, <e(E U, + 3 Wl o )

’Jp ss) s=1 u 9 =0 '}’s’)
LetfseH,’i(d_,x) N HY (dg), Yo eHLP Y2 (po) n H 2 (ys,), 5=1,2,8=0,1,2,
and
(3.31) K+l-py <o, <k+1-—p,

where i belongs to some subset of Z.
The solutions u,e HY* 2 (dy), use Hy 2 (dg), s=1, 2, satisfy”

i
(3.32) u =ty Y i MIndr og;(0),

i j=0
where A, are poles of multiplicities k; and summation is spread over all i such that
o, =ImA,; satisfy (3.31).
To show the existence of solutions of the.problem (3.1} in W/}*2(d,),
s =1, 2, we need the following facts.

LeMMA 34. Let f.(x), y,(x) be homogeneous polynomials of degree -2,
I—1, respectively,
(3~33) /s = Z fsi.iz xif xizz, '//s = wsl~ 1 |x’|'—1,

iLhia=1—2

where fii,, Ya-1, S=1, 2, are constants.

Ifl#0,k=0,FL,..., where a, are as in (3.5), then the problem (3.1) has
a unique solution of the form of a homoqeneous polynomial of degree I:
(3.34) o= Y Ug,, XT X

Wtiy=l

Uy, are constants, s =1, 2.
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Proof. We are looking for solutions of the problem (3.2} of the form
u, =1 P(p), s =1, 2, with right-hand sides (3.33). Therefore we get the
problem (3.4), where o is replaced by L For [ 3 g; (see (3.5), by Theorem 3.2 we
have the existence of a unique solution P.(¢), s =1, 2. Assuming that
u, = ' P,(¢), s = 1, 2, are not homogeneous polynomials and inserting them in
to (3.1) we get a contradiction with (3.33). The polynomials of the first degree
must be calculated explicitly. They are determined uniquely if a, +b,
#a,+b, =

From [3], § 4 and also from [10], [14] we have

LeMMA 3.5. Let v,eHL /(dy), 0<j< 1, j,1€Z, 0K peZ, o= (2, a,),
j=la =040, 0K g,eZ, i= 1,_2, s=1,2,06=pu+1, j+o <l Then there
exist functions v,eWi(dy) NH/ "7 (dy) such that D*v,—v,€H5(d,)
A W.i(dy,) and
(3.35) “vs“WL(dss)-‘_"vs”HHa—I(d +{1D* v~ vl o

U [ Hu(dg,)

£c Vel -
~ Z “ M'IW:. J(da)

lal=j s

, §s=1,2

Now we prove

LeMMA 3.6, Let fe Wk(d,), w,e Wi 12 (y), s=1, 2,0< keZ, yueR™.
Then there exist functions v, such that D*v e Wk(dy), s =1, 2,

fi+ V' AV v, =g, e Hi(dy),

(3.36)
Wo— AV v-all,, = e HiT 12 (y), s=1,2;

2
2
(3.37) 5;1("1) Us“"’k(d )+“g5"H:(d )+”¢3"H:+l/z )

uldg, S Ps)

2
<c e
<c . (Ml

s

=cX.
)+ I ‘/’;"Wt+ 1/2(1"))

Proof. (a) Let u be a noninteger. We introduce homogeneous polynomials

a\? rf
'»[/sqz('c—)“> W - 4 <k—p,
r r=0q'
(3.38) ¢
f‘;q = z D;’js XI1XZ|’ q < k_l—nua Jal = a1+a2, § = 1, 2.
lal:q x:=0a1.0(2.

Taking the functions (3.38) as the right-hand sides of (3.1), we get by Lemma 3.4
the existence of homogeneous polynomials v,,, ¢ < k+1—p,s = 1,2, which are
solutions of the problem

——ASV’VIUsts» ASVIUSIS‘—"//s’
(3.39) q q qly q

L - — 42 o — —
A Vvl = A2V 000l Uigly = Vaglhe, $=1,2.
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Let v, = Z“Hl_”vsqéj(x’), s=1, 2..-Then, by Lemma 2.2 (a) and its
version for traces of functions, the properties (3.36) and the estimates for the
last two terms in the left-hand side of (3.37) are satisfied. To estimate the first
term in (3.37) we use the fact that v, s =1, 2, depend on the derivatives

a\4
(b?) l»[Js
Difly=0, ltl<k—1—p,s=1,2.
Hence, using the embeddings (see [13])

s q<k—1us
r=0

D*u <cllu ol <k—1—pu,
” ”Lm(da)\ ” ||W::(d3), | | H

(3.40)
”unHLm(y) sc ”u”WtH/z(ﬂ’ q<k—upu,

we get (3.37)

(b) Let g+ 1 = o be an integer. In this case the construction of v is divided
mto two steps. At first we construct the polynomials vy, (see (3.39)) for
gk+1l—0=k—pn

Introducing
(3.41) vi= ) v,é(x), s=1,2.

ggk—u
by embedding theorems (3.40) (see [13]) we have
L =LV AV o eWEds), Yi=y,—AV vl al, eWrt2(y,),
D*vleWidy), s=1,2,

and
2
3.42 D2yl 1 1 v2 <cX.
G42) R AP0l UL I in ) S X
Moreover
D;' sll;:’= =0, o Sk_z_‘ .
(3.43) Js 0 o] K

DIytl=0=0, j<k—l-p.

Now we define functions vy, (@) = (&g, ay), |8 =0, 40, = k+1—pu=1,
by the relations

-0 5;:2_"(.«45 V'V vy0,0y) = 04, 6;2_" s =1,2, 0=0,...,1-2,
(cos @0y, +5in ©8,,)' ~1 A% P vyg,0) i = (COS 0y, +5in d,,) "1,
p=(—109, s=1,2,
(3.44) filp=—g, = (—sind, —cosd,),
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Filp=9, = (—sInY,, cos §,),
6:1 Al Ui, = 5: L 4?2 V' 020,05
ail U1(0,0) = 6;1 U3(0,0)
where f, is an extension of ¥, to dy, s =1, 2,

Ox, Usar,a2) = Ustay +1,a2)> Ox, Ustay.a2) = Us(as,az +1)-

To show the existence and uniqueness of solutions of (3.44), we consider
the problem
-V A V' P,=h, xedg,s=1,2,

AV PR, =0, s=1,2,

(3.45) Lo - o -
A V' Pin|,, = A“V' P, ql,,,
Pl'yo = leyo’
where
! x‘{ x2 q - x4 xl—z""
P s = Us(g,l=q)>
(x) = ; q q)| Z o1 (I—2—g)"" Psg = Vst~

(cos(— 1) §;x, +sin(—1F 3, x,) 7!
(= ’
Y-y = (cos(— 19,9, +sin(—1¥9,3,,) ', s=1,2.
By Lemma 3.4 for | # o,, where o, are as in (3.5), we have the existence of

a unique solution to (3.45), hence also for (3.44).
Now, putting | = k+2, j =k+l—puo=1+p, from Lemma 3.5 we derive

_ [-2- 1 —
hsa - ax; axz ¢ s 0 s = ‘/’sl—l

the existence of functions vZ, s = 1, 2, such that D? v? e W} (dy,), vZe H**'(dg)
and
3.46 D?y? + ||v? + || D* T2 —p .
( ) || s ” Wﬁ(dss) ” s ||H-:+ l(ds,) ” S(a)”Hu(d )
€cC Z ”vs(a:)" 1+u \CX:» 3= 1,2,
lal=k+1-u Wu (ds)

where the last inequality follows from the construction of vg,), s = 1, 2. By the
definition of vy, || = k+1—y, and (3.46) we get

(347) IDTUTHATV Vi o DR — AT 0] AL

Hyuds,) ¥s)
<cX, s=1,2.
Hence by Lemma 2.2 and (3.43) we get (3.36) and (3.37) for v, = v!+vZ,
s=1,2. m
Finally we have

THEOREM 3.7. Let 0 < ucR, 0<keZ, o, >k+1—p=0, feWi(d,,
Y, e WH12(y), s =1, 2 (where o, is the first positive ezgenvalue in (3.5)

),
)
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Then the problem (3.1) has a solution such that D% u e Wk(ds), s = 1, 2, |a| = 2,
and

2

G489 T N IDTul . Z("f gy TSl e, )

s=1|al=2 55) Wulds,)
Proof. We use Lemma 3.6 and then Theorem 3.3. m

Remark 3.8 (see [107, § 3). Let u (x), s = 1, 2, be solutions of the problem
(3.1). Then A2u (A" 'x"),s=1,2,1> 0, are solutions of the same problem with
£, x) Aws(/l Lx'), s = 1,2, instead of f, (x), ¥, (x"), s = 1, 2. Then we obtain
the estimate (3.48) for A?u (A7'x), s=1, 2 Passmg with 4 to 0 we get

2

2
< k2 )
(3.49) Ll proag, € 8O0, 1D, )

$= Vs

4. Existence of solutions to the problem (1.1) with
constant coefficients in a dibedral angle in R"

At first we extend Lemma 3.1 to the case of dihedral angles. This result is
necessary Lo define weak solutions and to prove the existence of solutions of the
following problem:

— - 2, —_ 2
Z U fs in j.qs, S—], .
s Ox 3x
/] au
i =y, on [, s=1,2,
ij=1 a rp=(—1)53_.,
4.1)
! du " ou
Za'lal = Za%a 2n, +yo on Iy,
ij=1 ij= Xi le=0
“1|«p=o = Uylp=0 on Iy,

where ﬁ1(p=0 = (0, 1, O, vaay 0)3 ﬁ]rp=—91 = (_Sinlgl’ —COS|9‘1, 0’ Tt 0)’ ﬁlq’__‘s]
= (=sin9,, ¢9s3,,0,...,0).

LEMMA 4.1, Let e HE ' "Y2(I), s =0, 1, 2, keZ, k> 2, ueR. Then
there exist functions v e Hy; (ng) s=1, 2, such that

42) A‘Vﬁvs-n=|ps on Iy, s=1,2,
‘ A'Vo i = A* Vo, ii+,. v,=0v, on [y,
2 2
43
(4.3) S; "H::(J ) c_.,; ¥, ”": o

where A = (aj)); j=,
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The converse is also valid. Let v,e HS(9s,), s = 1, 2; then |/, determined by
(4.2) belong to HE17Y2(I), s=1, 2, and

2 2
(4.4) Z Wl se-i-12 ) ScC Z logl s .
§=0 s=1

Hu s Hu(Ds,)

A proof can be obtained by means of a suitable partition of unity in 2,_,
s=1, 2 (see [6], Lemma 1.2).

Using the lemma we can consider the problem (4.1) with ¢y, = 0,s =0, 1, 2.
This problem will be denoted by (4.1)".

By a generalized solution to the problem (4.1 we mean functions
u,e # (2,,), s =1, 2, which satisfy the integral identity

2 n au 57’ 2
4.5 ——— =
(4-3) sgl ij=1 Jajaxiaxj s; J.Lns
Ds, ¥
for arbitrary, n,e #(D,,), s=1, 2.
If
2
(4.6) N=Y ([ Ifl*x—x,l?dx)"* < c0,
s=1 gﬁss
where x,e M, then the right-hand side of (4.5) is bounded above as follows:
2 2
YoF A< X (P = xol? de) 2 (] Ingl? x—xol T2 dx) !
s=1 9y s=1 Dy Dy,
2
<cN Z 175l 32225, -
s=1

Hence the right-hand side of (4.5) is a linear continuous functional on
H(Dy,)D H (Dy,). Therefore the Riesz theorem implies

THEOREM 4.2. Lgt f,, s =1, 2, be such that (4.6) is satisfied. Then there
exists a generalized solution of (4.1) such that u e # (2,), s=1, 2, which
satisfies the integral identity (4.5) and

2
(4.7) Z ||“s||m_%s) < cN.
s=1

Now we prove the main result of this section.
THEOREM 4.3. Let keZ _, ueR, be such that
(4.8) 6, >1+k—pu=0,
where o, is the first positive eigenvalue in (3.5). Let f,el’(2y), s=1, 2.

Then there exists a unique solution of the problem (4.1) such that
u e L2 (D) H (D), s=1, 2, and

2 2
4.9 u £c . .
( ) 312‘1 ” S”L:(: 1(99 ) = .‘;1 "ﬁ"L:(ﬁ‘llss)

k]
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Proof. Let di_(x', £) be the Fourier transform of the function u, with respect
to variables z, defined by the formula
fix, 6= Qu)~ =22 [ fi(x)e ¥4 dz,
Rn-2
where x = (X, 2), £=({;, ..., E-2)ER" 2, 2 & =x38+ ... +x,&-,. Pro-
blem (4.1) converts via the Fourier transformation to the following one:

2 2 n
- Z afj ﬁsxlx_j_i Z Z (a-:;+a51) iisxf zjj—l
i=1j=3

ij=1

+ Y aéabau=f, s=1,2,

ij=3

( a; n+tZa,,u£, zn)
J

.

ﬁ n
a_ Z u“xéj—zn.)
i, =1, fore=0.

XX
i= = e=(—1)8
2 2

(4.10) Z Z’

=0

= Z(Z au(a; n—HZauuzéj Zn)

i=1 \j=1 j=3

s
=0

Multiplying (4.10), by #,, integrating over dy_, summing over s, integrating by
parts and using (4.10), 54 we get

2 2 2 n
(4'11) Z j [ Z a‘l?jﬁsxiﬁsx_j-l-i Z Z a?j(asﬁsx(_asx(ﬁs)gj—z

s=1dg, 6j=1 i=1j=3
n 2
+ Z a?jéi*léj—lﬁsﬁx] = Z j j:ﬁs
i,j=3 S=1dss

Now, by a generalized solution to the problem (4.10) we mean func-
tions @, s = 1, 2, which satisfy the integral identity (4.11) for arbitrary func-
tions n,eH'(dg), s=1, 2. The left-hand side of (4.11) is equal to
Zs 12; | @ilsi Xjy Where i = (V' il,, i, £), x = (V'n,,in,&); so by ellipticity
(see (1.2)), the left-hand side of (4.11) generates a scalar product in H' (dgl)
@ H'(dy,) for almost all £. The right-hand side of (4.11) is a linear functional in
H'(dy,)® H'(d,); hence by the Riesz theorem we get the existence of weak
solutions to the problem (4.10) in H'(d,,)® H' (dy,).

Now we show the regularity of the weak solution. Putting n, = 4, &2 2
(E2 =&+ ... +&2.,) into (4.11) we get

2 n 2
412) &Y N (angiy =Y [ fa

s=1lij=1dg, s=1dg,

2
< 62—21.1 Z (j Iﬁlzlx/IZu dxl)lll(j' |as|2 |x1|—2y dxt)IIZ,

s=1 d\\;_‘_ dys
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where 5, = (V' 4, id,£). Observe that
(4.13) 27 [l x| *dy <c [ (Pa* ¢ M) dx',  pel0, 1)
dy, da,

(this follows from the interpolation inequality (2.4)). By the ellipticity condition
(1.2),
(4.14) [ afnang 2 ad [ Il =ad [ (V' a|+E|a)%)dx

ds’ da n'ss

Using (4.13) and (4 14) in (4.12) we obtain

s

(4.15) & 2"}: [ A7)+ |af)dx < CZ § L2 dx

s= ld_g s= lds
Now we show the boundedness of the integral Z & L (V' 4>+ &)%)
x |x'|?# dx’.
To do this we put n,=aV,(x',{) in (4.11) where ¢> 1 and V, =
min (g €] 2#, max (|x'|?*, |£]”2#)) €* is a bounded continuous function of x". Hence
2 n 2 2

(416) Z ( Z ja?jnsiﬁsng"' Z _[ a?jﬁsxllzl/ng+i Z Z aijlaalz VQxiEJ"Z)

s=1 ij=1ds, i.j=1ds, i=1j=3
2
3= 9

:a|

By the ellipticity condition (1.2) we get from (4.16)

2
@.17) apJ,=ay Y, [ (Va2 +E2 DV,

§= ldg

Z(I T2 e do') 3 j|u 2 V2 | x|~ 2 dx) 12

s=1 da
2

+C1 ‘_L':l (dj‘ IV:aslz V;dx’)”z(d_[ laslz 'V’ V9|2 Vo—de:)lp_
2 5

te, 3 (f 2V dx) ([ 12 V2V dx) e,

s=1 ds, ds,

.Y

Using the Young inequality in (4.17) we get

2
(4.18) Jy<c Y [ (fPIXIP+EP P VPVt eldl® 12 x| ) dx.

s=1 dss
From |V' V| V,"' < (2u)* &* 72 and (4.15) it follows that
(4.19) [ a2 v v 2 v, dx < (2u) &4 2§ Ja,)? dx’
dsg dg,

2
<c Y | ISP Ixdx.

s=1ds,
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Moreover,
(4.20) la)? V2 1x| "2 dx
ds,

<& [l vdd+ [ gl x| dx' £ 7%,
ds, da b
where dy, = {x'ed,,: |X'| = |€|~*}. From (4.13) and (4.15) it follows that the last
term is estimated by the right-hand side of (4.15). Therefore, using (4.19) and
_(4.20) in (4.18), for sufficiently small ¢ we get

2
4.21) Jo<cy [P dx.

s=1 d,gs

Passing with ¢ to infinity we get

(4.22) Z £ I(IV'ﬁI +E) X dx < ¢ Z TR X2 dx.
. s=1ldg,
Now we are in a position to prove the existence of solutions to the problem
(4.10) in I2,(25,)® L2,(Zs,). By the Hardy inequality (2.13) and by (4.22) we have
2 2
(4.23) Y ”éﬁ‘”;'(a ) <Y [ IVraf x| dx
s=1 pdag

s=1dg,

2
<c Yy ISP dx,
s=1dg,
where 0 < u < 1.

By (4.22), the second and the third terms in the left-hand side od (4.10),
belong to Lﬂ (ds,)® L, (ds,). By Theorem 2.1 we see that the terms with
parameter ¢ in (4.10),,3 belong to Hy*(dg,) @ H}\/? (dy,) (since in view of (4.23),
&g, s =1, 2, belong to H(dy,) D H, ] (dg,)). Then by Theorem 3.7 and Remark
3.8 we infer that fiseLZ,,(dss), s=1, 2, and

2
(+24) Tl < z 1712

Now, using the estimates (4.22), (4.24) and the Parseval identity we get (4.9) for
k=0 and pe(0, 1)

For k£ > 0 the proof goes by induction. Let us assume that (4.9) holds for
j<I—1. To show (4.9) for j =1, assume f,e&%(dy), s =1, 2. Then

(4.25) (V' el (dy), Eril,e8(ds).

Hence by inductive assumption,

Lu(ds, )

2
4.26 Vi
(4.26) P, <e X I,
2
427 7% 2
@27) 112, <€ X T2,



EXISTENCE AND REGULARITY OF SOLUTIONS OF TRANSMISSION PROBLEM 287

and so

@28) SN+
£ulds,)

u(‘i)

<cs§1(ézuf;u;:l_. FENIE, )< znfnz

s ) Suldsy)

Ss

From (4.26), (4.27) it follows that 7 ¢[, €& 12 (y,), 6 =0, 1, 2, s=1, 2.
Therefore by Theorem 3.3 and Remark 3.8 we have

(4.29) Z |~”21+z S Z 170,

8 Sulds )

and hence, by the Parseval identity, u,e L' 2(2y,), s = 1, 2, and we get estimate
(4.9) for & = . Hence the theorem is proved for ue(0, 1) and k > 0 such that
(4.8) is satisfied.

For a proof in the case u=0, u = 1, see Theorem 4.2 in [10]. m

Theorems 4.2 and 4.3 imply

COROLLARY 4.4. Let k, u be as in Theorem 4.2. Let f,e W(D,,) have
compact supports, s = 1, 2. Then there exist solutions of the problem (4.3) such
that D*u,e Wi(D,,), u,€e #(Dy), s=1, 2, and

2
(4.23) > (IIDzusllwu(oq +llullpiway) < ¢ Z (WA

W,;(Q )

Therefore the space Ak*%(2,) can be used.

5. The problem (1.1) with variable coefficients in dihedral angles

In this section we consider the following problem:
—VA*Vu+a*-Vu+bu = f in 25, s=1,2,
AS VAl pm = 1yss, = U on I',s=1,2,
G- A - Vu fl,mo = A* Vu,fl,—0, on I'g,
Uplp=0=Uzlp=0 on [y,

where A° = (af;+b};(x))ij=1....» @ are constant matrices, (bf;(X))ij=1..

a® = (a3 (x), ..., a;(x)), b* = b*(x) have supports in K§ = {xe D, |x| < 1}, and
b ()€ C 1 (D), at(x), ()€ C* (@), & j=1, ... n, s=1, 2. Assume

2 n
(5.2) > Z BEjlcx+ 1@s )+ )y laﬂck(@ss)"‘lbslcu(%s)) < 6.

s=1 i,j=1 i=1

By a generalized solution of the problem (5.1) we mean functions u e J#(2y,),
s =1, 2, satisfying the integral identity
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(5.3) i (g 1) = ., ( meﬂt/t )

s=1 Js

A (us’ 775) = J. A Vus Vns+as Vus r].v+bs Ul

995
valid for arbitrary functions n,e # (%y,), s=1, 2.
By the Hardy inequality we have
2

|u
2 S 2
Iu "L KD J x|? dx < cllulris,,

J_qs

sO
(54) o (e ) > ah I cony = 3 (It rcany sl o) 1]

N

. 0
2 10 luslSeasy  for 6 <

La(KD)

THEOREM 5.1. Let f,, 5, s =1, 2, have compact supports and satisfy

2
(5.5 NT= ¥ ([ U lxexol dxt [ 7 ol ds) < oo

s=1 E’ﬁ.gs I
where x,e M. Let 8 be sufficiently small. Then there exists a generalized solution
of (5.1) such that the integral identity (5.3) is satisfied and

2
(5.6) Z | ||m.as) cN.

The existence follows from the Lax-Milgram Theorem. Inequality (5.6)
follows from (5.3) applied to n, = u,, s =1, 2, and (5.4).

Theorem 5.2. Let k, u be as in Theorem 4.3. Let f.e W (D),
Y e WAL, s =1, 2, have compact supports. Let & be sufficiently small.
Then the problem (5.1) has a unique solution such that D*uje Wi(D,),
u,e I (Ps,), s=1,2, and

2 2
5.7 D?u, e y) € ¢ I s .
( ) S;] (" .us‘k‘(gss) “ .\'".#(Jss)) = _s.;l (Hj;”W:(-(’JSS)—i_ ”'w{/.s”W: l/l(r_\-))
Proof. We construct a solution of the problem (5.1) by the following
method of successtve approximations:

n (m)
_ Z (m+1y _ 0 b au —a- 7 (m) __ b’ (m)
a:_l usx..\J ax f Ug U +fs

L]
iLj=1 i,j=1 aJ'
=Lu"™+f, s=1,2,
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2 ) 2 n au(m)
K +
Y Y aullt Ul = — ) Y u(x)

j=1li=1 i=1j=1 j

+¥

lo=c- 18,

E‘lzugm)-l'lllsa s=1,2,

2 n
(58) Z Z (a u(m+1)n auu(zn;::‘—l)n')ltp=0

2
= > Bu.
0 s=1

for m>0 and 4 = 0. Assuming that u™e A%*2(9,), s =1, 2, and using

™

Z (I, ui-"”llwk(g )+ I, “.(sm)“WM . + 115 ul™ |l W g )

s=1 n(Ds, B ( o o)

< ¢6 Z flu™ " k2 )

s=1 (Zsy)

Lemma 4.1 and Corollary 4.4 we see that u{"* Ve A%*2(9,), s =1, 2, and

2 2
(9 X Iy <ed Y - s
s=1 L

s = A (@s,)-

5 s=1

Therefore, for sufficiently small 6, the inequality (5.9) guarantees that the
sequence {u{™}, s = 1, 2, converges to a solution u,e A4 2(D,,), s = 1, 2, of the
problem (5.1). m

6. Existence in a bounded domain

In a bounded domain Q = Q, U Q, we consider the following problem (more
general than the problem (1.1)):

—VA*(x) Pu,+a(x) Vu,+ b (x)u, = f; in Q,s=1, 2,
(6.1) A*(X)Vu, i =y, on S;, s=1, 2,
A'Pu, A= A*Vu, A, u, =u,, on T,

where A4° = {a};(x)};j=1.... are symmetric matrices (see Section 1),

aj;eC**1(Q), a', b’eC"(Q) s=1, 2
By a weak solution for (6.1) we mean functions u.e H' (), s = 1, 2, which
satisfy the integral identity

6 S ot un) = ¥ ([ St i) = 10,

§s=1 0

19 — Banach Center 1. 24



290 W. M. ZAJACZKOWSKI

for arbitrary n,e H'(Q,), where

A (ug, n) = [ AVu, V4o Vun+bun, s=1,2.
2

If feL,(Q), ¥,eL,(S,), s =1, 2, the right-hand side of (6.2) is a lincar
functional on H'(Q) = H'(2,)® H*(2,) and

2
(6.3) 1= 3 (Mflaen+ 1 lLys.)-
s=1

Then the problem of existence of a weak solution is formulated in the form of
the operator equation in H!(Q)

(6.4) U+VU=F,
where U = (u,, u,), V is a compact continuous operator and
(6.5) i 1F sy = LI

Having the existence of a weak solution and knowing that S, Fe C**2, s = 1,
2, we infer that it belongs to H**2(Q)), s =1, 2, where Q; is an arbitrary
subdomain €, such that dist(L, €;) > 0.

Assume that Le C**2. Then we can establish the regularity of solutions
in a neighbourhood of the edge L. Let ze L and let U, be a neighbourhood
of z. Let @, be the dihedral angle between tangent spaces I', = TS,
and I'y =T, I', s =1, 2, (where T,I' is the tangent space to I" at ze I'), whose
edge is an (n— 2)-dimensional linear space tangent to L at z. Therefore there
exists a difffomorphism Tfe C**2, such that @y, > V& = TF Vs, where
V;=0Q,nU, and

(6.6) VSsé=Tx, xeV:.

Let (e K, (2) = {£€ Dy, U Dy, |E—2| < o}. Weintroduce new coordinates
= z+(E—z)p~ ! in which the problem (6.1) can be written in the form
— VAR Vu +a® Vu,+b%u, = 0%f,, in Q,s=1,2,

(6.7) A¥Vun = o, on I',s=1,2,
AVu n=A**Vu,n, u;=u,, on Iy,

where  af(y) = afi(z+e(y—2)), a®(y) =o0a"(z+0(y—2), b*(y) =>b"
x{z+¢(y—z)) and the dash denotes the coefficients of equation (6.1), after
transformation (6.6). Therefore, for sufficiently small 4, the condition (5.2) is
satisfied. Hence we have

THEOREM 6.1, Let S, I', LeC*"2, A C**', o*, b*e C*, and assume that

T (&), (&), have bounded norms | f)|| . M e & .S =1, 2, where
v W) (K o(z)) Wiz (Ko (2))

K (z) = K,(z2)n T, s=1, 2, and
(6.8) c,@)>k+1—u(z) >0, u(z=0.
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Then the weak solution of the problem (6.1) has a bounded norw
Jlut | W2 where dist (P75, QAVH>0,s5s=1, 2, and

Wuiz)(

2
6.9 U, k+2 7 <c U + s w1 .
(69) z Il ez, < € 2 (sl o A 1L+ IO o, )
The proof is almost the same as that of Theorem 6.1 in [10].
Summing over all neighbourhoods of L we obtain

THEOREM 6.2. Let S,, I', LeC**2, AcCH*', o', beCh, f.e Wy (),
yoe WESY2(S,), s = 1, 2, and assume that (6.8) is satisfied for all ze L. Then the
weak solution of (6.1) belongs to WEL2(Q), s=1, 2, and

2

(6.10) Z il e <o (lusllmroa+ Ll e o I i ria

s=1 Win=)(R2¢) s=1 w2 ¥ iz (s

Now we consider the problem (1.1). The solutions of this problem are
determined up to an arbitrary constant. For definiteness we assume

(6.11) fu=0 s=1,2

Qs
Then we have

THEOREM 6.3. Let the assumptions.of Theorem 6.2 and (6.11) be satisfied.
Then there exists a unique solution of the problem (1.1) such that u,e Wi}2(Qy),
s=1, 2, and

2 2

6.12 u <c ;

612 P bl < T ULy Wl e )
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