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In the paper of Dvoretzky [1] very deep and meaningful results
were formulated. They concerned the existence of nearly spherical k-
dimensional central sections of an arbitrary symmetric convex body in
a Euclidean space R" of sufficiently high dimension. The proof is rather
difficult, it depends on sophisticated estimations of wvarious measures
of some subsets of spheres and Grassmann manifolds. However, it is not
complete; the proof of important Lemma 8 involves certain approxima-
tion procedure which is not quite obvious. ‘

The purpose of the present paper is to fill this gap in Dvoretzky’s
proof and to make some simplifications. To achieve this we prove a result
(Theorem 1) stating, roughly speaking, that the measure of the set of 2-
dimensional linear subspaces of R" intersecting the given Borel subset A
of the unit sphere 8" ' is less than the lower Minkowski content of A.

In spite of its generality, we think that our proof is simpler than
the direct justification of Dvoretzky’s approximation which is known
to us.

Lemma 8 of Dvoretzky is a particular case of Corollary 3 to Theorem 1.
Instead of using Lemma 8, one can shorten and simplify the proof of Dvo-
retzky’s Theorem 2 using our Corollary 1.

The other simplification we made is the deduction of Corollary 4
from Lemma 6, which gives the estimate of the mean value of the function
p(®) = |#||<' on the unit sphere S™~!. Dvoretzky’s proof of this fact
involved his Theorem 3B, whose proof is much more complicated.

We begin with some definitions and notations.

Let ||-|| be a Euclidean norm in R", and let d be a geodesic distance
on 8"~! given by the formula

d(x, y) = 2 arcsin (4o —yl)-
For any 4 < 8" ', x¢ 8" ! and r > 0, we define

d(4, ») = inf{d(z, y): ye.A},
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A, ={ye8" ' d(4,y) <r},

B, ={ye8"': d(x,y) = =},
(4, 2) = {ye E,: zcost+y sinte A for some teR}.

(This means that (4, z). is the image of a projection of A along the
meridians through 4 x on the equator E, corresponding to the point z.)
Besides the usual Lebesgue measure " in R" we shall use Hausdorff
measures #" ! and #" % (for definitions and basic properties see [2]).
Let f be an s#" -integrable function on 8" '. We write for abbreviation

f f(x)dx
instead of
enr @S [ flw)do s
sv-1

Let A be a Borel subset of §"!; we define
u(A) =f.;f"-2(A, z)de.

The signiﬁcé;nce of the functional u is a consequence of the following
remark (cf. [1]).

Let » be the normalized invariant measure in the Grassmann manifold
G(m, 2) of all 2-dimensional linear subspaces of R". Then, for every sym-
metric (i. e., A = — A) Borel subset A of 8",

p(A) =#"2(8"*w({EeG(n,2): ANE +# 3}).
Dvoretzky’s proof needs a demonstration of the fact that the estimate
(1) u(d) <#"*(4A)

holds for A in a sufficiently wide class of Borel subsets of 8"~! (containing
for any subset X of sphere the boundaries of almost all sets X,,r > 0).

Using some clever method, similar to that of Ohmann [3], Dvo-
retzky concludes that it suffices to consider the sets A of the form 0X,,
where X is finite (0 Y denote the boundary of Y with respect to S§").
His Lemma 8 contains merely the sketch of the proof of (1) in this simple
case.

Our method avoids a difficult direct comparison of x and #" 2
Namely we prove

THEOREM 1. If X is a Borel subset of S™~', then

1
u(X) < 0(X) € liminf —#"1(X,).
r—>04 2r

This result reduces in many important cases the proof of (1) to the
verification of the inequality o(A4) <#"%2(4), which frequently is a direct
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consequence of known theorems relating Hausdorff measure to Minkowski
content (see, e.g., [2]). We shall give such examples after the proof of
the theorem.

In the final part of this proof, we use some modification of Ohmann-
Dvoretzky method, for which we shall need some simple geometric esti-
mations.

To gain this we fix a Borel subset X < §"! and real numbers

0<g<r<s<it<inm

Let 8 = {2,,...,%,} =< X be a minimal finite g-net for X (i.e.,
X = 8,). Let x be the characteristic function of the set ¥V = X,u(— X,).
We write

(2) a =#"*8"?) [ y(a)dw.
Putting ¢ = 2™ 2(8"2)(#"*(8"1))~", we have
(3) a = 304" (V) = }C#™ Y (X,u(—X,))
< 301 (X) +77H (— X)) = " H(X).

LeMMA 1. Under the assumptions above, the following inequality
holds:

p(X) < u(08,)+a.
Proof. Let ze 8" '\V and ye(X, #). Consider the function
flu) = d(8S, zcosu+ysinu), O0<u<m.
Since f is continuous and

inf f(u) < g<r<t<f(0).

ue[0,7t]

there exists a wu,e(0, ) such that f(u,) = r. It is clear that (xcosu,+
+ ysinu,)e08,. Hence we have proved that ye(0S,, ). Since ¥y was an
arbitrary point of (X, z), we infer that

(4) H X, x) <H#"2(08,, 2).
For z<V we have
(5) H (X, w) <A (H,) <HH8M) 4208, @).
It follows from (4) and (5) that, for any e 8",
A" X, x) <H"T(08,, @) +H#" (8 ) 1 (w).

We conclude the proof of the lemma integrating this inequality
with respect to s#” ' and recalling (2).
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Let z = 2; be a point of 8 and let m > (t—7r)"! be an integer. For
£e(R")*\{0} we define U, = £ *((— o0, 0)). Consider the set
Fim = {£¢(R™)*\{0} : Uen{2}rirjam = 9}

The family {Ug.r,, is an open covering of the compact set
{we8"': d(w,2)>r+1/m}. Choose a finite subcovering {U,, ..., Uy}
and define

l k
Gr =8"\UU, HF=067, W"r=UG6pr
j=1 i=1

It follows from the construction that
(6) Sri1pm S W™ < 8.

Let p* denote the projection of d{z;}, onto H}* along the meridians
through +z,. An elementary computation shows that p7* is Lipschitzian
with a Lipschitz constant

g . 1 1\2
L, < (sinr)~*sin?{r4+ —|<{14+ —] .
m| . rm
Hence for every Borel subset 4 < 0{z;},

2(n—2)

1
(1) o) < (14 o) A,

LEMMA 2. iminf#"—2(0W™) <#"%(08,).

m—o0

Proof. We define A; = {2,},nd8, for 1 < i< k. Then we have

k
(8) H"208,) = D (4,
(9) OW™ < C)p?‘(Ai) for any m.

Equality (8) is a simple consequence of the minimality of the set 8,
gince for 1 < i < j < k we have 2; # z; and, therefore,

A" ((0{e}) N (9{2;},)) = 0.

In order to prove (9), we take a ye W™ and choose a j, 1 <j <k,
such that d(y,2;) = min d(y,?;) =d,. Let ¥ be the unique point of
ik

8"~! such that d(7, 2;,) =r and d(%, y) = dy—r. For any j #j we have

d(y, zp) = d(y, 2;) — d(y, §) = dy—(dy—7r) =r, hence Fe08, and, since
k

Je{z;},, we obtain ge A; and y = p7*(¥) e p;" (4;) = U p7*(4,;), which, because
=1

ye W™ was arbitrary, concludes the proof of (9).



It follows from (9), (7) and (8) that

k
liminf#"~2 (0 W™) < liminfo#"~%(J pI(4,))
i=1

m—oo

k k
< limint Yo" *(pP(4,) < ) limsupo#t™*(p7'(4,))
®©  i=1

m— =1 Mmoo

k
< )" 4,) =#"2(08,).

=1
The next lemma was proved by Dvoretzky [1], for the sake of comple-
teness we briefly sketch his proof.
LeEMMA 3. If A is a Borel subset of some equator E,,, then

u(d) =H#""*(4).

Proof. Let {A4;};2, be a sequence of disjoint Borel subsets of E,.
Let #e8"~'\E,. Since the projection along the meridians of E, onto E, is
a homeomorphism, we have

KU Ay @) = DA Ay ).
= i=1

Integrating this relation over 8"~!, we infer that u restricted to the
o-algebra of Borel subsets of E, is a o-additive measure.

Observe that u(E,) =#""*(E,) and both x and #™~* are invariant
with respect to orthogonal transformations of E,. Hence the lemma is
a direct consequence of the uniqueness of a normalized invariant measure
on a homogeneous space of locally compact group (see, e. g., [2], Theorem
2.7.11).

LEMMA 4. #"7%(08,) > 2u(X)—4a.
Proof. Observe that each of the sets H;* is a union of a finite number

k
of subsets of equators. Since dW™ < |J HY*, there exists a decomposition
p i=1
OW™ = (U C;, where C; are Borel subsets of some equators such that
i=1
H"HC;NC0;) = 0 for 1 <j<j <p. Clearly we may assume that every
C; is contained in a unique equator, say E;. Using Lemma 3, we obtain

p

p .
) W) —am () 6 = Y#rrey) = Y u(o)
i=1 j=1

i=1

- i‘fxm—z(_o,., x)do = fﬁ‘%n—z(c,, ) da

=f( fN('v, w)dai"‘“zv)dw,
Ey
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where N (v, ) denotes the number of j’s, 1 < j < p, such that the meridian
joining # and — « through v intersects the set C;.
We estimate from below the internal integral.

D
Let zeS* '\ (Vu (J E;),ve(8,, x) and let
i=1
f(u) = d(W", zcosu+wvsinu), O0<u<m,
u, = inf{u: f(u) =0}, wu, =sup{u: f(u) = 0}.

If m > (t—r)"!, then it follows from (6) that u, # u,. Hence v’
= x cosu;+vsinu,;, ¢ = 1,2, are two different points of dW™. Since

P _
x¢ U E;, they must belong to different sets C;. We have thus proved
=1

that
N (v, ) > 29(v),

where y is the characteristic function of a set (98,, ). Integrating this
inequality over E_, we obtain inequality

D
[ N (@, m)yds#™ 20> 2077208, @) for #eS*'\(VU U E)).
E, i=1

Since for x¢V we have

f N (v, 2)d#™ 20 = 0 > 2 (#"%08,, x) —#™2(8"2)
Ex

and %"‘I(CJ E;) = 0, there is, by (10) and (2),
A2 @W™) = [ ( [ ¥ (v, m)w—2(v))dw
Ea:

> 2 f (#7~3(88,, x) —#" (8" x (v)) dar
= 2(u(@8,)—a) for m > (t—r)".

Lemma 4 follows immediately from this estimate and Lemmas 1
and 2.

8
LEMMAB. [#" (0 X,)dr =" (X \X,).
q

Proof. We use the following fact ([2], Theorem 3.2.11).
If A is a Borel subset of R", and f: A — R is a Lipschitzian map,

then
(11) [IDf(@)|ag"s = [ Anf(@)dy.
A R
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Fix an ¢>0, and let A = {ix: te[l,14¢], veX,\X }. Define
f: A — R by the formula

x

flo) = a(x,-=).

It is easy to verify that f is a contraction and

(12) (1+¢)7" < infess||Df (#)|| < supess||Df(z)|| < 1.
zed

xed

It follows from (11) and (12) that

(13) (1+e)7'2™(4) < [ YAnf(y)dy < 2"(4).
R
Observe that

1
LM(4) = — [+~ 11" (X,\X,),
1 —L [(L+&)"'—11#"2(0X,) forg<y<s
f"_l(Aﬂf— (y)) ={n—-1 v <ysx s,
0 otherwise.

Substituting these values in (13), dividing by ¢, and letting ¢ approach
0, we obtain the desired formula.

Proof of the theorem. Without loss of generality we may assume
that o(X) < oo and therefore

(14) lim #"1(X,) = 0.

t-—’0+
It follows from Lemma 4 that for re[q, s] we have

H"1(D8,) > 2u(X)—4a.

Integrating this inequality over the segment [g, ] and using Lemma 5,
we obtain

(s—q)(2p(X)—4a) < [#"%(D8,)dr =#""}(8,\8,) <#™}(X,).
q

Recalling (3) and letting ¢ approach 0 (s,t—fixed), we infer that
s(2u(X)—4a) <H#"(X,),

1
uX) < "7 (X,) + 2077 (X))

We conclude the proof letting s approach 0 (¢ fixed) and then using (14).
The following corollary contains exactly the fact which is needed
for the proof of Dvoretzky’s results:
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COROLLARY 1. If X be a subset of 8", then, for almost all r > 0,
u(0X,) <#"*0X,).

Proof. Inasmuch as (0X,),c X, X, , for 0<s<s' <r, we

have
m—l((axr)s) <W—1(Xr+s) —om (Xr—-s)'

Hence, for every r>0,

1(0X,) < 0(0X,) = hmmf ——x’"-l((ax,),)

-

hmmf s (X"“(X,H) —#" (X, _,))-
804
Since the right-hand side is, by Lemma 5, equal to #" *(d X,) for
almost all », the proof is complete.
In order to formulate the next corollary, we denote by K (X, r)
the set _
{yeR": |z —y| < r for some weX},

where X ¢ R" and r > 0.
COROLLARY 2. If A is a Borel subset of 8"~ ' such that

lmnnf—.?"(K(A 7)) <H"(4),

r—04
then (1) holds.

Proof. It is enough to prove that, for every subset X of the sphere
and every & > 0,

(14) liminf — E"‘(K(X r) > o(X)—¢..

r—0

Consider the function f: R" — R, f(xz) = |[z||. Since |Df(x)|| = 1 for
any ¢ # 0, we obtain, using the theorem cited in the proof of Lemma 5,
that

(15) LNE(X,7) = [#" HoeK(X,r): o = t}dt.
R
Observe that
(16) {we K(X, 1) : [l =t} =t X 0,

where the function a does not depend on the set X and satisfies the follow-
ing condition:

a7) a(r,t)<r for te(l—r,1+7).



Since there exists a 6 > 0 such that for s < ¢
1
(18) ?';W"_I(Xa)> o(X)—e,

we infer, using (15)-(18), that for r << § there is
147

(19) ZME(X,r) = f (X ) B
1-r e
>2(0(X)—¢) [ " a(r,t)dt.
1-r
Inequality (14) is an easy consequence of (19) and the relation
14-r
1 1
(20) lim —— f " a(r, t)dt == .
r._>0+ Tt?’z 12 2

Indeed, it suffices to divide (19) by =72 and let » approach 0.
To prove (20) observe that for any equator E = E, we have

1 1
(21) lim —2.?"(K(E, r)) =#""*(E) = lim —#""Y(E,) = ¢(E) #0.
r—0 nr r—>04 2"
Using (21), we obtain easily from (19) the inequality
147

1
o(B) > 2(o(B) — ¢) limsup — f "~La(r, t)dt.
>0 Tr 12,

Since ¢ was arbitrary and ¢(Z) # 0, we obtain

14r 1

limsup — " la(r, t)dt < —.
H°+ 71‘.'1‘3 12 2
Now observe that by (21) there exists a 4, > 0 such that
%—M“(Es) < o(B)+e for se(0, d,).
This inequality implies, as before,
1+r

(22) LK (B, ) <2oc(B)+¢) [ " a(r, t)dt.

Using (22) instead of (19) and reasoning as in the preceding proof,
we obtain
14+7r

1
lim inf — f " a(r, t)dt >

r—0 T

1
2
1-r

which completes the proof of Corollary 2.
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COROLLARY 3. If A < 8" ! is the image of a compact subset of R™*
under a Lipschitzian map, then

u(4) <H#"A).

Proof. Since, by the theorem of M. Kneser (cf. [2], Theorem 3.2.39),
the assumption satisfied by 4 implies

lim —1—2$”(K(A, r) =#""%(4),
r—0, T
Corollary 3 is a special case of Corollary 2.
Let us pass to the problem of simplification of Dvoretzky’s Theorem 3.
Let # = (#y,...,%,)e R*™\{0} and p,(z) = (max(jz,|, ..., |[z,])""
We prove the following
LEMMA 6. If M, is the mean value of the function p, on the unit sphere
8", then M, = O(Vn/logn).
Proof. We may assume that n > 2. Define the function f, ¢ L, (R", z")
by the formula

fn(@) = 77" exp (— ||2][2) Py ().
Let I, = [ f,(»)d<"». Passing to spherical coordinates and using

RrR"
the well-known relation s#"!(8"~!) = 2x"2I'(n/2)~!, we obtain

I, =of drrgnflfn(w)déf"'lw

— f”n—l(sn—l)rn—le— rzf-lﬂ_nlendT
(1]

n\~! [ n—1 n\ !
= 2M,,T'(§-) !7"'26—'2(% = .MnI'( 2 )I’(E) .
Since I'(n/2)I'((n—1)/2)"' ~Vn[2, it is enough to show that
I, = 0(1/V1ogn). Let C(t) = p, ([t7}, =)) and

p(t) = [ fulz)dL"a,
Cc(t)

t
—-n,2 _ 2 - __2_ —u2 "
nt) == C(!)‘exp( ||l||?) dL" 2 —('/; B{e du) .

Then
v (@) =t"'9'(t) for t>0.



Integrating by parts, we obtain

(23) I, =fdw(t) =fwt“dn(t) =ft‘277(t)dt
0 0 0

o0 t
2 n
- f 12 (—: f o du) at.
g Vg
Using a simple inequality
t —
Ve 2t
(24) [t au<min (33, 25
2 "t4+1

0

) for t>0,

we easily infer that for any positive 4 the following estimate holds:

) 2 t n A =)
I,,=ft‘2(—:fe‘"2du) dt =f +f
0 '/“o A4

0

A4 t oo
6 . 2 n-—2
<—1—f(t+1)‘2(——_—fe‘“2 du) dt + f t=2dt
T3 Vr H 4
¢

6 Va 7 a2 @2 [ o\ _
0 0

sup ((+1)"2e+A4-1.
n—1.,<,<pA( )

It is easy to check that

<

sup (t41)7%¢" = max (1, (4+1)"%4),

o<i<4

hence substituting A = l/log n we have for n large enough (greater than 5)
the estimate

I < 1 n 5. n 1 n 6
N "~ Viogn n—1logn  Yiegn - logn’

which completes the proof of the lemma.
Remark 1. Estimating more carefully, one can obtain

1 0 ( loglogn ) .

I, = —— +0(2%"
Vlog n (logn)**
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In a similar way, one can prove that, for any a > 0,

)T [ pu(a)dm s
sn—l -

al2

COROLLARY 4. If R, i8 a positive number such that
A" HzxeS ' p.(2) > R,} = 3" H(8*Y,

then R, = O(Vn[log n). _
Proof follows from Lemma 6 and an obvious estimation

1
M, — fpn(x)dw> =

Remark 2. The estimate B, = o(ﬂ) from Theorem 3A of Dvore-
tzky, being in many cases sufficient, follows directly from (23), (24)
and Lebesgue’s theorem.
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