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On positive eigenvectors of a linear eigenvalue problem

by JAN BOCHENEK (Krakow)
Zdzislaw Opial in memoriam

Abstract. The linear eigenvalue problem in a real ordered Banach space is investigated. The
purpose of this paper is to generalize some results of papers [4] and [6] concerning differential
operators of the second order. In particular, the results obtained by use of the new method can be
applied to some linear eigenvalue problems for differential operators of higher order (see Section 5).

Introduction. Kato and Hess [4] recently studied the elliptic eigenvalue
problem

Lu=/imu on Q, u=0 on dQ

in 2 bounded domain 2 < R" (n > 1) with a smooth boundary 02, Here L is
a strongly uniformly elliptic differential expression of second order with
real-valued Holder continuous coefficients. The coefficient of u in L is
nonnegative and m is a continuous real-valued function. Assuming only that
m(x,) > 0 for some x, € 2, they prove that there is a unique positive eigenvalue
/. with corresponding positive eigenvector, whereas every other eigenvalue
with nonnegative real part satisfies Re4 > 4. If m(x) is negative at some point
in , there is an analogous eigenvalue 4_. Senn and Hess, continuing the work
initiated in [4], treated in [6] the same eigenvalue problem with Neumann
boundary conditions. Basing on the Kato and Hess idea, Bochenek [1]
investigated the same eigenvalue problem with boundary conditions of-a third
type. The other method of generalization of Kato and Hess results was
proposed in further papers by Bochenek [2] and [3]. The eigenvalue problem
for a linear operator L in an ordered Hilbert space was considered. The method
applied required the assumption that L is a selfadjoint operator.

The aim of the present paper is to generalize the Kato—Hess results [4].
The eigenvalue problem for a linear operator L in an ordered real Banach
space is considered. The method is an adaptation of that used in [2], [3].

Let X be a real Banach space. Recall that a cone C (with vertex at 0) in
X is a closed convex set such that (i) xe C and t > 0 imply txe C, and (ii) if xe C
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and x # 0 then —x¢ C. A cone C is called reproducing if X = {x—y: x, ye C}.
A cone C induces a partial ordering in X by x < y if y—xeC, and C is called
normal if there exists a constant M such that 0 < x < y implies ||x|| < M||y| for
any elements x, yeC. If B: X - X is a bounded linear operator such that
B(C) = C, then B is called positive (with respect to C), in symbols B > 0.

It is known that if C is a normal reproducing cone in a real Banach space
X and B: X — X is a bounded linear positive operator, then the spectral radius
of B, i.e. the number spr(B):= lim||B"||'’", is an element of ¢(B) (c(B) denotes
the spectrum of B).

In the sequel we shall employ the standard notation of ordered Banach
spaces: x =0 if xeC, x>0 if xeC\{0}, and x> 0 if xeC:=IntC. Let
L denote a linear operator defined in D, dense in X. We impose the following
assumptions upon the operator L:

(i) L: D, —» X is a closed operator,
(1) for every a > 0, (L+a)~! exists and is a compact and strictly positive
operator; ie. (L+a)”! maps C\{0} into C.

Let V: X - X be a bounded linear operator such that (V+14) and (}—V)
are positive operators. We also assume that X is a real Banach space ordered
by a normal reproducing cone C.

1. First eigenvalue problem with a parameter. In this section we consider
the following eigenvalue problem with a parameter ¢t > 1,
(1) (L+tu = »(V+1)u,
where e R is the eigenvalue parameter and

(2) to = inf{teR: (L+t)~! exists and is a strictly positive operator on X}.
We shall prove the following

LEMMA 1. For every t > t, the problem (1) has a first eigenvalue »x, = x,(t)
such that »,(t) > 0, with a corresponding eigenvector u, > 0. Moreover, the
mapping t—x,(t) is a continuous function for t > t,,.

Proof. Let ¢t > t, be a fixed number. By the assumptions concerning the
operators L and ¥V, we see that

K,:=(L+1)"'(V+1)

1s a strictly positive compact operator in X. Thus it has a positive spectral
radius. The Krein-Rutman theorem [5] guarantees that v (f):= spr(K,) is the
only eigenvalue of K, whose associated eigenspace contains a positive vector.
Moreover, the geometric and algebraic multiplicities of v, (t) are equal to one. If
x is any eigenvalue of (1), we have x > % (t), where »,(t):= 1/v,(¢). Let us
remark that equation (1), for ¢ > t,,, is equivalent to the equation

3) u=xKu
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in X. Since K, is a strictly positive operator, the first eigenvector u, of (1)
corresponding to x,(t) for ¢ > t,, belongs to C.

Taking into account that L: D; —» X is a closed densely defined operator,
we can define the (Banach) adjoint operator L*: X* o D, — X* and we have
[(L+t)~']* = (I* +t)”'. By the Krein—-Rutman theorem, v,(t) is an eigenvalue
of the operator K with a corresponding positive eigenvector ufe X*; ie.

(4) vi(Ouf = Kfug.

Since u;* is a positive linear functional on X*, the inequality (u, u) > 0 is
satisfied for ue X and u > 0.

Assuming that ¢ > ¢, is a fixed number and he R satisfies the condition
t+h>t, we obtain

(L+t+hup=»,0t+0)V+Duyty,
(L+0u, = s, ()}(V+uy,.
In what follows,
CL(uesn—u) +t(sn—u) =%, (OV + D —u), u)
= —h by WY+ [y (W) =2, (O] LV + Vit ),
or
Cuyyp—uy, L¥uf +tuf —se, (O(V* + Duf)
= —htpan WD+ [ (E+h) =2, (O LV A+ Dy, uF>.

From the last equality we get

() Dey @+ ) =3¢ (O KV + Dty g, wFD = hCtpan, U
Equality (5) with the assumptions concerning the operator V lead to
0 < Tl R = (0) Cidgrny WE <
h CVigons tf )+ Cttypvns U
Therefore, |x,(t+h)—x,(¢) < 2|h|, and consequently
(6) lim », (¢t + h) = »,(¢),

which completes the proof.

Lemma 1 and the results of paper [7] (see Theorem 2 of [7]) lead to the
following.

LEMMA 2. For every t > t, the mappings t —u, and ‘t - uff are continuous.
THEOREM 1. For every t > t, the function x, = x,(t) is differentiable and

uy, uf)

0 A0 = TV D, ury
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Proof From equality (5) we get

uy (+h) =3, (1) Ueaps U
h VA Dty uF

Applying Lemma 2 to the last equality, we obtain equality (7).
Since {(V + 1)u,, u¥)> >0 and <u, uf) > 0, we derive from Theorem I:

COROLLARY 1. The function t—x,(t) is increasing for t > t,.

The first eigenvalue x, (t) of problem (1) has been so far defined for ¢ > ¢,
Since t — x,(t) is an increasing function, there exists 0 < x, := lim %, (t,) for any
sequence (t,) < (to, + 00) with ¢, \ t,,. Let u, , with {lu, || = 1, be an eigenfunction
associated with x,(¢,). We have

&) (L+t)u, =3, (t,)(V+ Dy,
Equality (8) may be rewritten in the form
9) Uy, = * (LA T+6)7 (V4 Dy, +(L+1+1,) u,,.

Since (L+1+¢,)"'(V+1)and (L+1+¢,)” " are compact operators on X such
that (L+1+¢t) '(V+1)—>(L+1+ty)"'(V+1)and (L+1+t,) P> (L+1+¢t,) !
in B(X, X) as n— oo, the sequence (u, ) is relatively compact in X. Hence (for
a subsequence) u, —u,, in X, u,, >0, and

(10) U, = #o(L+14+t) ' (V+ Dy, +(L+1+1t5) " uy,
or
(11) (L+ o), = xo(V + Dt

Two cases can occur.

(A) %,=0. In this case equation (10) leads to the equation u,
= (L+1+41t,)" 'u,, with u,, > 0. The Krein-Rutman theorem applied to the
compact and strictly positive operator (L+ 1 +1,) !, implies that 1 = spr(L+ 1
+1t)~'. Further dim(Ker[1—(L+1+¢t,)"'])=1 and dim Ker(L+ty) = 1.
From equation (11) we get that O is a simple eigenvalue of the problem (1), for
t =t,, with positive eigenvector u,, ie. Ker(L+t,) = span[u,].

(B) %4 > 0. From equation (11) we obtain that there exists the operator
(L+ty) ' and (L+t,)" ' >(L+1ty) ! in B(X, X) for t, \ t,. Hence (L+1,) " ! is
a compact and positive operator on X. We now prove that (L+ty) ' is
a strictly positive operator on X. Indeed, let ue C be any vector and let
v:=(L+t,) 'u. We haveve C. Since u = (L+t,)v, we have (u+v) = (L+1+1,)v.
Thus v =(L+14t,)" '(u+v) and so veC. This proves that (L+ty)~ "' is
a strictly positive operator on X. This contradicts the definition of ¢, showing
that case (B) is impossible.

Summarizing, we have
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COROLLARY 2. The problem (1) has the first eigenvalue »,(t) for t = t,, where
to is defined by (2), and »(t) >0 for t >t,, x,(ty):= %, = 0. The mapping
t —x,(t) is continuous and strictly increasing for t > t,. The eigenvalue x,(t) is
simple with a positive eigenvector u, > 0; i.e. Ker(L+t) = span([u,} for t > ¢,

2. Second eigenvalue problem with a parameter. In this section we consider
the following eigenvalue problem:

(12) (L—1V)v = uv.

In (12) L and V are the operators defined in Introduction, t is a parameter and
#eR is the eigenvalue parameter.
We shall prove

THEOREM 2. The problem (12) has a simple eigenvalue pu,(t) for each 1€ R
with a positive eigenvector v, > 0; i.e. Ker(L—1v) = span[v,] for 1€ R.

Proof. It is known (see Corollary 2) that the probiem
(13) (L+tu=x(V+1)u
has the [irst eigenvalue (), for t > t,, where ¢, is defined by (2) with u, > 0.
This means that
(L+t)u, =»,{t)(V+Du,.
This equality may be rewritten in the form
(14) (L=, (O)V]u, =[x, (t)—t]u,, t=t,.

Since ¢ - x,(t) is continuous and strictly increasing for ¢ > t,, the function
%y ! exists and »;': [0, +o00)—>R. If we write t:= x,(t), for ¢t > t,, we get
t = »x; '(7). Equality (14) takes on the form

(]5) (L_TV)ut = ﬂ1(T)“n

where u,(1):= 1—x{'(z) for = > 0.

This shows that u,(t) = t—x; (1) is an eigenvalue of the problem (12),
with positive eigenvector v, := u, > 0 for t:= x,(t). Since x,(t) is a simple
eigenvalue of (1), this leads to the conclusion that the problem (12) has u, (1) as
a simple eigenvalue with positive eigenvector v, for each 7 = 0.

Suppose that t < 0 in (12). Then equation (12) may be written in the form

[L—(=1)(=V)]v = pv.
On account of the first part of the proof, we get the assertion ol Theorem 2.

THEOREM 3. For each 1€ R the mapping ©— u,(7) is a continuous, differen-
tiable function and

Vo, v

(16) Hi(1) = o 0Py
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Proof. The claim follows directly from Corollary 2 and Theorems
1 and 2.

3. Eigenvalue problem with an indefinite weight operator. In this section we
investigate the eigenvalue problem

(17) Lu = /iVu,

where L and V are the operators defined in Introduction. The considerations
this and subsequent sections need the following

HyPOTHESIS Z. There exists o, € R, 2, > ty, and wyeD,, w, > 0 such that
(18) Lwy—a,Vw, <0.

LEMMA 3. Under assumption (18), thereexist i: 0 < A < ag,and ue D, u >0,
such that Lu = AVu.

Proof. From (18) we obtain
(19) (L+og)we—ag(V+ 1w, < 0.
The positivity of the operator (L+a,)”" leads to the inequality
(20) Wo < 0o K4 We,

where K,:= (L+6)"}(V+1) for ¢ > ¢,

Now the assertion of Lemma 3 is a direct consequence of Lemma 3,
Lemma 1 (in [4]) and Lemma 4 (in [6]).

Comparison of the eigenvalue problems (12) and (17) implies

COROLLARY 3. A number 4, is an eigenvalue of (17) with positive eigenvector
u, if and only if u,(4,) = 0, where p, (1) is the first eigenvalue of problem (12) with
positive eigenvector v,, 1€ R. The eigenvector of problem (17), corresponding to
Ay IS Uy = OV, 0 > 0.

COROLLARY 4. If inequality (18) holds and if u,(0) > O, then the function
T— u,(1) has at least one positive zero-point 14, i.e. u,(t9) =0, 74 > 0.

Remark 1. If 7: X — X is a bounded linear operator such that V— V> 0
on X and the operators L and V satisfy Hypothesis Z, then also the operators
L and V satisfy this hypothesis (L and V are defined in Introduction).

For tel:= (— 0, 1), we consider the equation (cf. [4])

(21) Lu = A(V—1t)u,
where
(22) t:=sup{teR: L and (V—r¢) satisfy Hypothesis Z}.

Therefore the eigenvalue problem (21) has the first eigenvalue A, = 4,(t) = 0,
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for tel, with corresponding eigenvector u, > 0. By Proposition | (in [4]),
t — 4,(t) is a strictly increasing function in t € I, and by use of Lemma 5 (in [4])

we get A,(t)—> +o0 as t—L
For tel and t€R, let us consider the following problem:

(23) Lv—t(V—1t)v = uv,

where u is an eigenvalue parameter. From Theorem 2 it follows that the
problem (23) has a simple eigenvalue u(t, t) for each 7e R and tel with
a positive eigenvector v,, > 0. One can observe that if

Lo, —t(V-t)v., = ult, t)o,,,
then
(24) Lv.,—tVv,, = [u(z, t)—t]v,,.
Equality (24) means that
(25) u(t, t) =, (t)+tt, <t€R, tel,

where p,(7) is the first eigenvalue of the problem (12) for reR.

LEMMA 4. Suppose that t > 0, where t is defined by (22). Then pu, (1) =0
and 14> 0 lead to

(26) pi(n) <0 for v > 1.

Proof. From (25) it follows that R x I 3(t, t)— u(t, t) is a continuous and
differentiable function. Since Oel, we have. u(r, 0) = u,(r) for reR. From
Lemma 3 we conclude, in view of Corollaries 3 and 4, that for every tel the
equation

(27) w(t)+t =0

has a solution t = 4,(t). This solution 4,(t) = 0 is the first eigenvalue of the
problem (21), with a positive eigenvector u,€ D,. We know that Iat— 4,(t) is
a strictly increasing function; hence there exists A7 !: (0, +0)3t1—-> A7 '(t)eR,
which is also strictly increasing. For 7 > 0 we get from (27)

(28) t= ——= A1 (7).
Differentiability of t — u, () together with (28) imply the differentiability of the
function T— 47 !(7) and

A— f
(29) d/'l — _l.ll(f)‘l"t
dt

Since T— A; '(7) is an increasing function, it follows from (29) that p)(1) < —¢
for £ > 0. Hence, if t >0 then

(30) ui(t) < 0.

for T #£0.
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By assumption, u,(t,) = 0 and 7, > 0. Hence, by Corollary 4 we infer that 7 is
the first eigenvalue of problem (17) with a positive eigenvector. From (27} it
follows that 7, = £,(0). On the other hand, the monotonicity of the function
T=/2,(t) m ¢ > 0 results for t > 7,. Therefore, from (30) we obtain (26). This
completes the proof of Lemma 4.

TutorReM 4. Suppose, under the assumption of Lemma 4, that the inverse L'
exists and is a positive operator on X. Then the eigenvalue problem (17) admits an
eigenvalue ~, > O which is the unigue positive eigenvalue having a positive
eigenvector. Moreover, 7, has the following properties:

(1) if 2€eR is an eigenvalue of (17) and 2.2 0, then £ 2= /4;

(i) v, i= 1/4, is an eigenvalue of L™': X — X with geometric and algebraic
multiplicities 1.

Proof. The assumption that L™ ! exists leads to the conclusion that, in
particular, ~ = 0 is not an eigenvalue of the problem (17). Hence, it follows
from Lemma 3 that the problem (17) admits an eigenvalue 72, >0 with
a positive eigenvector u,. By virtue of Corollary 3, i, (%,) = 0, where g, (1) is the
first eigenvalue of (12) with a positive eigenvector v, € R. By positivity of L™
we have u,(0) > 0. On the other hand, from (26) we obtain that 1 — u (1) is
a strictly decreasing function for © > 4,. This implies that 2, > 0 is the unique
positive solution of the equation y, (1) = 0. Consequently, from Corollary 3 we
obtain that 4, > 0 is the unique positive eigenvalue of (17) with positive
eigenvector.

In order to prove (i), let us observe that ., > 0 is the eigenvalue of (17)
with a positive eigenvector, if and only if 2, is a solution of the equation

(31) t=x,(1).

Here x, (1) is the first eigenvalue of problem (1) for ¢ > 0. We know that if () is
an eigenvalue of (1), then x(r) = x,(¢t) for every t = 0. Suppose that 2 > 0 is an
eigenvalue of (17). Then ~ satisfies the equation 4 = x(4), where x(f) is an
eigenvalue of (1) for t > 0. From the equalities 4, = x,(4,), 4 = %(4) and
inequality x(t) = x,(t) (for every t > 0) we get the inequality 4> 4,.
Assertion (ii) is a direct consequence of the Krein-Rutman theorem and the
fact that 4, is the eigenvalue of problem (1) for t = 4, (see the proof of Lemma 1).

4. Eigenvalue problem (17) in the exceptional case. Theorem 4 concerns the
regular case of the problem (17), i.e. such that there exists the operator L',
positive on X. In this section we consider the exceptional case of (17), i.e. the
case of noninvertible L. From the assumptions concerning the operator L (see
Introduction) and from Theorem 2 we conclude that in this case problem (12)
has the simple eigenvalue u,(0)=0 with an eigenvector v, >0 and
Ker(L) = span{v,]. By Theorem 3, there exists u}(0) and

_—
(32) (0 = — Vo 182
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where v > 0, v§e X* and Ker(L*) = span[c§].

THEOREM 5. Suppose, under the assumption of Lemma 4, that the operator
V'is such that {Vu,, v§) # 0. Then the problem (17) admits a unique eigenvalue
7., # 0 which has a positive eigenvector. More precisely, 7., > 0 if (Vv,, v§)> <0,
and 7, <0 if Vv, v§) > 0.

Proof. By assumptions of the theorem, and by (32), we have ;,(0) =0
and ;(0) # 0. Suppose that {Vu,, v§> <0, ie. u;(0) > 0. Continuity of the
function 7 — y,(7) leads to 4, (t) > 0 in a right neighbourhood of 0. Reasoning
as in the proof of Theorem 4 gives the statement of Theorem 5 for the case
(Vry, v <O.

For (Vug, td) > 0, it suffices to write (17) in the form Lu = (—2)(— V)u
and use the first part of this proof.

THEOREM 6. Suppose. under the assumption of Lemma 4, that the operator
V fulfils {Vvy, v§> = 0. Then O is the only eigenvalue of the problem (17) hacing
a positive eigenvector.

Proof. According to the assumptions of this section, the etgenvalue
problem (21) has the eigenvalue 4, = 0 with a positive eigenvector v, for every
te R. For every t # 0 we have {(V—1)v,, v§> # 0. Hence, by Theorem 5, there
exists an eigenvalue 2,(t) # 0 of the problem (21) with a positive eigenvector t,.
Since t — 4,(t) is a strictly increasing function, there exists 4, ', given by (28).
From (28) we get
(33) diy' _ _u’l(r)r:#l(r) for 1 0

dt T

Since di;!/dt > 0 for 7 # 0, we have by (33)
(34) i1y = (t)r for t#0.

Inequality (34) with conditions u,(0) = 0 and ;;(0) = 0 shows that 7 -y, (1) is
a concave {unction in a neighbourhood of 0. Hence y,(7) < 0 in this neigh-
bourhood for 7 # 0. On the other hand, if there exists t, # 0 such that
i(ty) = 0, then p,(zy) = 0. These properties of the function t— u,(t) imply
u,(7) # 0 for v # 0. Consequently the problem (17) has no eigenvalue 4 # 0
with a positive eigenvector. Theorem 6 is thus established.

S. Application to the elliptic eigenvalue problems of higher order. In this
section we show that the results of Sections [-4 may be applied to certain
linear eigenvalue problems for differential operators of higher order.

Let 2 be an open bounded subset of R" with smooth boundary ¢Q2. We
consider the eigenvalue problem

(35) Lu=/Vu in Q,
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where L is a differential operator defined in the Banach space X := C(Q) by
a differential expression of the form

(36) b=, &,

Here

G7 Si= T il T 0y k=1
kY - L2 oniaxj = laxi s s - D,

is a strongly uniformly elliptic differential expression of the second order with
real-valued coefficient functions af; = @, b}, ¢* > 0, belonging to C**~2*%((QQ)
(0 < 0 < 1). We consider equation (35) with the boundary conditions

(38) o, =0 ondQ, k=1,...,p,

or

(39) C{qu'f—h"wk=0 on éQ, k=1,...,p,
v

where @, :=u, @:= L, 4iy... Lou, k=2,..,p. In (39), K (k=1,...,p)
are real-valued, nonnegative and continuous functions on ¢Q; v is an outward
pointing, nowhere tangent smooth vector field on ¢Q.

Equipped with the positive cone Cy:= {ve X: v(x) >0 VxeQ}, X is an
ordered Banach space. It is known that for each k = 1, ..., p the differential
expression ¥, with the boundary condition (38) or (39) defines an operator L,
in the space X. By the maximum principle, (L, +¢)” ' is a strictly positive
operator for each &> 0; ie. it maps C,\{0} into C, (sec [4] and [6]).

Let us define the operator L by the formula

(40) Li=LL,...L,
with domain D; defined by
(41) D, := {ue C**(Q): u satisfies (38) or (39) on 0Q}.

One can prove, using the Krein—-Rutman theorem, that the operator
L defined above satisfies assumptions (i) and (ii) from Introduction. Let us
define V as the multiplication operator induced by a function me X. Without
loss of generality we assume that |m| <1 on Q. Then (V+3) and (3—V) are
positive operators on X. We are now interested in the situation where
m changes sign in Q.

We shall prove the following

THEOREM 7. Suppose m(x,) > O for some x,€£. Then the operators L and
V defined above satisfy Hypothesis Z; i.e., there exist a,eR, oy >0 and
a function woe D, n Cy such that

(42) Lwg—oa,Vw, <0.
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Proof. The continuity of m ensures that there exists ¢ > 0 such that
B, = @ and m(x) >0 for all xeB,, where B,:= {xeR" [Ix—x,|| < ¢}. Let
wo€ C*(Q) be a function such that suppw, B, and w,(x) > 0 for all x e B,.
Obviously, woeD;, w, > 0, i.e. wye Cy. It what follows, Lw, = ¥ w,, and so

Lwy=0 in Q\B,.
Since Vw, = mw,, we obtain
mw,>0 in B, and mwy=0 in Q\B,.

This implies £w, = mw, in Q\B,, and we get for sufficiently large ay, >0

FLwo—agmwy <0 in B,
Therefore, we obtain for all xeQ
(43) (Lwp)(x) —agm(x)wy(x) < 0.

Inequality (43) is equivalent to (42). This proves Theorem 7.
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