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On the convergence of successive approximations
in the Darboux problem

J. S. W. WonG (Edmonton)

1. Introduction. Recently B. Palczewski [6] has proved the
convergence of successive approximations in the Darboux problem under
the uniqueness conditions of Krasnosielski and Krein type (). These
uniqueness conditions have been generalized together with other con-
ditions for uniqueness by the present author [8]. In the present paper,
we wish to show that the above-mentioned conditions guarantee not
only the uniqueness of solutions of the Darboux problem but also the
convergence of successive approximations. Instead of following the usual
method of proving convergence of successive approximations, it will be
shown that these results all follow as a consequence of certain general
theorems concerning mappings defined on some appropriate function
spaces. This approach was first initiated in a paper by W. A. J. Luxem-
burg [4].

2. Two theorems on contractions. Let X be an abstract set
with elements z, v, 2, ...; and let d(z,y) be a non-negative real valued
funetion (0 < d(z, ¥) < o0), defined on the Cartesian product X x X and
satisfying:

(D1) d(z,y) =0 if and only if z =4y,

(D2) d(wy ?/) = d(y) z),

(D3) d(z, y) < d(x, 2)+d(z, y),

(D4) Every d-Cauchy sequence converges to a limit in X, i.e.

lim d(xp,xm) = 0 implies the existence of an element z ¢ X such that

n,m—00

lim d(z, s) = 0.
n—00

An abstract set X on which such a distance function is defined is
called gemeralized complete metric space. It differs from the usual concept
of complete metric space by the fact that not every pair of elements
necessarily has a finite distance.

(1) These uniqueness conditions are first given in [7].
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TEEOREM 1 (Luxemburg [4]). Let X be a generalized complete metrie
space, and T a mapping defined on X into itself satisfying the following
conditions:

(i) There exists a constant 2,0 < A <1, such that
d(Tz, Ty) < Ad(z, y)

for all z,y e X with d(z,y) < oo.

(ii) For every sequence of successive approximations =z, = Tp_,,
n =1, 2, ..., where x, 1s an arbitrary element of X, there exists an index N (x,)
such that d(wx,Zn+1) < oo for all 1=1,2, ...

(iii) If & and y are two fixzed points of T, t.e. Tz =2 and Ty =y
then d(z, y) < oo.

Then the equation Tx = x has one and only one solution, and every
sequence of successive approwimaitons {xa} converges in distance to this
unique solution.

THEOREM 2 (Edelstein [2]). Let X be a compleie metric space and T
a mapping defined on X into tiself satisfying the following conditions:

(i) For all ¢,y ¢ X, x # y, we have

d(Tz, Ty) < d(z, y) .

(ii) For every sequence of successive approximations xp, = Txp_,,
n=1,2,.., where x, 18 an arbilrary element of X, there extsts a subsequence
which converges to a point = ¢ X.

Then, the equation Tz = x has one and only one solution, and every
sequence of successive approzimations {x,} converges im distance to this
unique solution.

3. The Darboux problem. Let D denote the rectangle: 0 < z < a,
0<y<b(a,b>0)and £ = Dx{— oo <u < oo}, We are here concerned
with the solutions of the following partial differential equation:

*u

(1) ox oy

=Hz, 9, %)

where f(z,y,u) is defined and continuous over E, and the solutions
u(x,y) satisfy the conditions that: u(z,0) = o(xr) and «(0,y) = r(y).
Moreover, we assume that the functions o(z) and z(y) are of the class C!
satisfying the condition ¢(0) =7(0) and defined respectively on [0, a]
and [0, b].

The Darboux problem is equivalent to solve the following integral
equation:

z v
(2) (@, y) = gol@, y)+ [ [ s, 1, uis,) dsdt

0
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where @z, y) = o(x)+v(y)—0c(0). In term of (2), the sequence of suc-
cessive approximations of Picard is then defined by:

Tz v
(3) onr1(@, 9) = 0ol@, 9)+ | [ 1(s,t, gals, 1) dsdt
0 0

for n =0,1,2, ..., where ¢, is any function defined on D continuous
with (@o)z, (@e)y and (@,)zy Which also satisfies ¢(z, 0) = o(2) and ¢(0, v)
=1(y) for 0 <z <a and 0 <y <) respectively. The set of functions
satisfying the above mentioned properties will be denoted by C*(D).

4. The generalized Krasnosielski and Krein condition.

TEEOREM 3. If f(z,y,u) i¢s defined, conttnuous and bounded on E,
and it satisfies in addition the following:

(4) lf(w,y,ul)—f(w,?/,ua)l<wﬁylu1—uzl, k>0,

(5) If(z, y, uw)—f(z,y, “2)|<a}“%ﬂglul—“zlav >0

with 0 <a<1, f<a and k(1—a)2< (1—p8) for all (z,y,u) e E, then
there exists one and only one solution w(x,y) of the Darbouz problem for
equation (3), and furthermore the sequence of successive approrimations
of Picard, as defined by (3) for any function @, in C*(D), converges uniformly
on D to this unique solution.

We now show how Theorem 1 may be applied to prove the above
result. For this purpose we have to construct a suitable complete metric
space X and a mapping 7 from X into itself, and prove that conditions (i),
(ii), (iii) of Theorem 1 are indeed satisfied. A natural choice for X is the
space C*(D) and for every pair of elements ¢,, ¢, ¢ X, we define the fol-
lowing distance function on X x X:

lpu(2, ¥)— a(z, ¥)]

(@y)PV*
where p > 1 and pk(1— a)? < (1— )% which is possible since we always
have k(1—a)® < (1—p)% Clearly this function d(g,,,) satisfies the re-
quirements (D1), (D2), (D3) for a metric. Moreover since

(M (ab)™™*dy(94, @a) < A1, p2)
where d,(@;, ¢;) = ng lpu(@, ¥)— @a(@, ¥)| denotes the metric of uniform

(6) d(@,, @2} = sup
D

convergence; it follows that d-convergence implies uniform convergence.
To show that condition (D4) is also satisfied for d(g,, ¢,), we let @, € X,
n=1,2,.. be a d-Cauchy sequence, i.e. lim d(ps,9m) = 0. Hence

n,m—>00

there exists a subsequence y, such that d(yni1,¥s) <2 ". Now since X



332 J. 8. W. Wong

is complete under the uniform metric, therefore the subsequence {yp,}

converges to some element ¢ ¢ X. The fact that o—wn = D (yis1—vr)
k=n

—n+1

and hence d(p, ya) <2 implies d{p, ga) < J’l‘im d{p, ve)+1im d(ye, pa)
—»00 k—oc0

which tends to zero as n tends to infinity, proving (D4).
The natural choice for the mapping 7 is the following:

z ¥
(8) To(z,y) = oo, 9)+ [ [ 1(s,t, 9(s, 1)) dsdt
0o 0

which is easily seen to be a mapping of X into itself. Furthermore, the
solution of the Darboux problem in its equivalent form (2) corresponds
to the fixed point of T' and conversely. For an arbitrary element ¢, ¢ C*(D),
the successive approximations of Picard as defined by (3), are simply
the sequence {ps:¢n = Tgp_y, n =1,2,...}.

Proof of (i). Let ¢,, ¢, be two arbitrary elements of X. Then by (4)
we obtain:

z v
| To,— To,| < ff 'f(s,t,gol(s,t))—f(s,t,qu(s,t))ldsdf.

o0

z y
lpi(s,1)— @3, )|
<k dsdi
ofﬁf- st

LV
=k st)m/" 1 I‘Pl(’? t) ‘Pf(s t)' dsdt .
of of (st ®

If d(¢,, ps) < oo, then we conclude

(st)'pﬁ

| Tp,— Ty < d(gy, o) » -

and hence by definition of d, d(T¢,, Tp,) < Ad(¢p,, ¢,) where A = 1/p,
proving (i).
Proof of (ii). Let M =sup|f(z, ¥, )|, and ¢ = Top—1, n =1,2, ...,
E

where @, is an arbitrary element in X. We obtain from (2) that

(9) lpe(z, ¥)—pu(@, ¥)| < 2May .
It follows from (9) that:

94(, 9)— g4l Y] < ff!f(s tgals, D)—1 (5, 1, guls, 1) dsd

<C ff(f&M)"m"y"

< G(ZM) (wy)t P+
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and successively we obtain:
(10)  |@n+s(@; §)—nsra(@, Y)| < CHH7 @MUY )t T T

By hypothesis: pk(1— a)? < (1— f)?, hence there exists a N(p) such that
n> N(p) we have (1—B)(1+a+..+a" 4"t > py&. This shows in
particular that d(@p+1, ¢a) < + oo for n > N(p)+2.

Proof of (ili). Assume that both u,, 4, e X are fixed points of T,
i.e. Tu, = u, and Tu, = u4,. Using the argument just presented for
equation (10), we conclude easily d(u,, u,) < oo.

After these verifications on conditions (i), (ii), and (iii) of Theorem 1
the conclusion of Theorem 3 follows immediately from Theorem 1.

5. The generalized Nagumo-Perron-Van Kampen condition.

THEOREM 4. If f(x, y, u) is defined and continuous on E, and it satisfies
tn addition the following:

(11) : lf(m;y’“)lgA(wy)pv p>—1,A4>0,
C
(12) If(z, 9, ul.)_f(w’yruz)l<(wy),.lu1_‘uzlqy g=1,0>0
where
c(4)!
1+p)—r=p, o=-—rc
q(1+p | P (1)

for all (z,y,u) e E. Then there exists one and only one solution u(z,y)
of the Darbouxz problem for equation (3), and furthermore the sequence of
successive approximations of Picard {pn} as defined by (3) converges uniformly
on D to this unique solution.

The proof of this result follows exactly the same pattern as that
of Theorem 3. Here we choose the same space C*(D) for X and same

mapping T as defined by (8). In this case, we define the distance function
d(@,, @) on X X X by:

o2, ¥)— @ol, y)) )

(13) d(¢l? ¢2) = Sgp (wy)p+1

Following the same procedures as in the previous section, it can be easily

shown that d satisfies the conditions (D1), (D2), (D3), (D4) for a complete
metrie.

Proof of (i). Let ¢,, ¢, be two arbitrary elements of X. Then from (2)
and (11) we obtain:
ZA p+1
(14) lu(z, y)—v(z, y)| < rr@”
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Moreover, by (12) and (14) it follows:

z y
_ |pa(8, 2) — @als, 1)[°
| Tpy(, y)— Toe(w, y)| < C .)f of Gy dsdt

z Y :
< Calgy, pa) | [ (507 lgute, —gale, O dedt
o o

T v
< Cd (@15 2) (__Zil_)q ' f [ (st)P+l—f+(P+l)(¢-l) dsdt
P+ 6 0

2A g—1 (my)P-I-l
= Cd(gy, ¢2) (p +1) 21
= od(@y, ¢o) (2y)"" .

Hence by the definition of d we have d(Tg,, Tp,) < od (@1, ps).
Proof of (ii) and (iii). The proofs are trivial in this case, as the
required estimate is already given in (14).

6. The classical Nagumo condition.

THEOREM 5. If f(x,y,u) is defined continuous and bounded on E,
and it satisfies the following:

(15) @, ¥, w)—F (@, ¥, ug)] < m—’;lul—uzl

with k <1 for all (z,y,u) ¢ E, then there exists one and only one solution
of the Darboux Problem for equation (3) and furthermore the sequence of
successive approximations {pn} as defined by (3) converges uniformly on D
to this unique solution.

We shall apply the result of Theorem 2 to prove the above statement.
To do this, we again choose the space C*(D) as the underlying space X
and 7' is the mapping defined by (8). However, in this case, the distance
function d(g,, ,) will be defined by:

I?’l(m’ Y)— (@, y)l '
ry

Clearly d satisfies all four conditions (D1), (D2), (D3), (D4) for a complete
metrie, provided that d(g,, ;) < oo for any pair of elements ¢, ¢, € X.
Since f(z,y,u) is continuous, we note that ]f(a:, ¥, u(@,y)—f(z,y,v(z, y))l
< M., where M., is bounded on D and tends to zero as = or y tends to
zero, or both. Therefore it follows easily that d(g;, ¢;) is finite. To obtain
the desired conclusion of the above theorem we need only to check that
conditions (i) and (ii) of Theorem 2 are satisfied for T. N

(16) d(pyy @s) = Sup
D



On the convergence of successive approzimation 335

Proof of (i), Let ¢i(z,y) and ¢z,y) two distinct functions

from C*(D) and define B(z,y) = il y)wy%(m’y)l. From the previous
argument, we have shown that B(z, y) is continuous over D and hence
attains its maximum at some point (zy, y,) € D, i.e. B(x,, ¥o) = d(¢1, @2)-

Consider the following estimate:

z Y
1)— gufs, t
A7) [Te:(@, y)— Toul@, y)| < ff 7, )St%(s’ | dsat < digu, gulav .

00

From the definition of d we obtain d(T¢,, Tp,) < d(g;, ¢;). We claim
however that the equality cannot occur in (17), i.e. we must have
d(Te,, Te,) < d(p,, ;). Assume contrary, then there exists points (2, ¥%,),
(@1, ¥,) € D such that

l@1(To, Yo)— Pa(@oy, ¥0)| | Toa(®s, 91) — Tpa(@s, )|

= =d(Te,, Tp,) .
ZoYo 4, (Tory Tea) -
It follows from (8) and (2) that

t )t
d(Te,, Te,) < wylff i ACE )St%(s )id di .

Since ¢,(0, ¥) = ¢2(0,y) and @\(z, 0) = gy(z, 0), we obtain

d(py, 2) =

i

1
d(‘l’1’¢2)<ay_1d(¢1a%)6f! dsdt = d(gy, @,)

which is the desired contradiction.

Proof of (ii). Let ¢(x,y) be an arbitrary function of C*(D), and
we consider the family of iterates {I"¢}. Since f(z,y, %) is continuous
and bounded over E, we can easily show that the sequence of iterates
form a family of uniformly bounded equi-continuous functions. Hence
as a consequence of Ascoli’s Theorem ([1], p. 5), there exists a sub-
sequence {I™p} which converges in the sense of uniform metric d, to
some element ¢(z, ¥) ¢ C*(D).

Observe for ¢ > 0, there exists (on account of the continuity of f)

d > 0, such that for all ¢ we have sup |T'"(p(m,;2!—¢(m,y)| < &, where
E

E = {(z,y): (,y)e D and either 0 <2z <é or 0 <y <Jd}. Next, we
may choose N (8) such that for ¢ > N(&), sup | TMp— qpl < 6%. Hence we

obtain:
— 11’“ _ 1_”“
d(IMQJ"P)gMaX{supLT‘z_I; %uEI ;Z/ ¢p|}
for all ¢ > N(8). Therefore d(T™p,p)—0 as i—oo.
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7. Remarks.

(i) The statement originally given by M. Edelstein in [2] is somewhat
different from Theorem 2. However the modification is evident.

(ii) By taking f = 0 in Theorem 3, we obtain the result of B. Pal-
czewski [6].

(iii) In case that the rectangle D degenerates into an interval,
say [0, a], Theorem 3 and 4 reduce to the corresponding result for ordinary
differential equations [4], [5]. Similarly, Theorem 5 reduces to the classical
result of van Kampen [3].

(iv) Our results not only prove the uniqueness of solutions and
convergence of successive approximations, but also the existence of
solutions to the Darboux problem.
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