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On the theorem of Meusnier in Weyl spaces

by A. SzyYRIAK (Rzeszéw) and TRAN DINH VIEN (Vinh)

Abstract. Given a rogular surface in a Weyl manifold then this surface is also
provided with a Weylian structure which is induced by an immersion. The paper
containg some intrinsic constructions of osculating subspaces of this surface and
the generalized equalitics of I'renet are deduced. Then the theorem of Meusnier on
the projection of a tangent vector to an (j—1)th oseulating plane is obtained.

In this note we present another point of view and another method
than those given in [4] and we extend the former result onto manifolds
with a Weyl structure. A modern view upon these structures has been
given in B. G. Folland’s paper [2] (cf. also [3]). We present it briefly.
Let W be a differentiable manifold of dimension » > 3. Assume that
there is given a family G of Riemannian scalar products on W such that (i)
if g and 7 are in @, then there exists a positive scalar function, o, on W
such that g, = a(p)g, for each p W, and (ii) if = is a positive scalar on W
and ge@, then rgeG. In order to treat G as a unique geometric object
we have to consider some boundles over W. The first of them is a bundle
R xW—W, where R denotes an additive group of real numbers. The
second bundle which we introduce is the product B xX.L(W), where L(W)
denotes the common bundle of linear frames. Thus @ may be viewed
as a cross-section in a certain bundle which is associated with the bundle
R >xL(W). In fact, let

[6(p), €,(D); ..., ea(p)] and  [6(p), (D), --., €n(P)]
be the two elements of & XL(W) which are bound by a relation
(1) 8 =0+t e,=2ZI4le, where [47]<GL(R").

We consider the matrices of the form [ay], 4, ) =1, ..., n._We identify
the two pairs, ([ayl, [0 €y, ..., €,]) and ([3;], [0, €4, ..., €,]) iff rela-
tions (1) imply

(2) akh = Z.A.%.A';—‘ exp(Zt) a‘j.

Thus we obtain a bundle over W which is associated with R xL(W).
Evidently & is a cross-section of this bundle.
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DerFINITION. A Weyl structure on M is given by a couple (W, @, ),
where W and & are as described above and y is a connection in the bundle

RxW-W. . .
Let I" be a linear connection. We denote by w its connection form

and by V the related covariant differentiation. Thus w@y is a connection
form on the bundle R XL(W)->W.

DEFINITION. A connection form w@®y is called compatible if the
following conditions are satisfied: 1° o i3 torsionless, 2° for any geG
and any vector fields X, Y,Z on W we have

(3) Vag(X, XY) = g(Vz X, Y)+9(X, Vz X)+2y(Z)g(X, ¥).

Remark. Compatible connections and the related covariant differ-
entiations have been investigated by V. Hlavaty. Let us notice that
for any vector fields X and Y the field g(X, Y) is a geometrical object
field asosociated with the bundle B x W—W. Its transformation rule is
g(X, Y)—(exp2t)g (X, ¥). Thus its covariant derivative is the following:

Vag(X, Y) = 029(X, Y)+2y(2)9(X, Y).

Then equality (3) is analogical to the condition that some linear connec-
tion is a Levi-Civita one.

We shall find some intrinsic expressions for compatible connections.
The result of the following considerations will include a proof of the
existence and uniqueness of the compatible connection if the compo-
nent y is given.

We have Vy¥Y—V,X = [X; Y] (the Poisson brackets) because the
torsion of @ vanishes. Then we have

9\VxY,Z) =[X, Y;2],— y(X)9( Y, Z)—y(X)g(X, Z)+y(Z)g (X, Y).
‘We introduce the invariant Christoffels; namely, we put

X, ¥; Z]a: = ‘Haxg(Y, Z)+0yg(X, Z)—079(X, Y)+9(X,[Y, Z])+
+9(¥, [X,2])—g(Z, [Xa Y]))

Equality (3) and its cyeclic variants yield
Oxg(¥,2)+ 05g(X,Z)—059(X, Y)
=g(Z, VxX)+9(Z, Ve X)+g(X, VyZ -V X)+-g(X, VxZ—VzX)+
+9(Y, VxZ -V, X)+2(p(X)g(Y, Z)+y(Y)9(Z, X)—y(Z)9(ZX, Y)).
Hence we see that the mapping Zi—~[X, Y; Z], is linear and its values

depend only on the point values of Z. Thus Fy Y is uniquely determined
because g is non-degenerated. If we fix g, then we may write

(4) VY =¢ [X,Y; =1,—p(X)Y—y(XY)X—g(X, Y)g y,
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where ¢~ denotes the isomorphism of the cotangent bundle onto the
tangent bundle over W, this isomorphism being determined by ¢. In
local coordinates g is just the lifting of indices of covectors. Let us notice
that the left-hand member of (4) does not depend on the choice of g,
while every right hand member does.

(*) Construction of osculating spaces (cf. [1]). We consider an #-di-
mensional manifold V which is a submanifold of the given Weyl manifold
W, r < n. We assume that the identity mapping is just the immersion
of V into W. This immersion immediately induces a Weyl structure on V.
If aeV, then we denote by ¥V, and W, the spaces which are tangent to V
and W, respectively, at the point a. We take into consideration vector
fields X, X,, ..., ¥, Z etc. in a neighbourhood of the fixed point a. Then
we define a sequence of mappings and of vector spaces as follows: We set

p1(X) =X and VyX = @u(X, Y)+ vy (X, T),

where ,(X, Y) is in ¥, and @,(X, ¥) is orthogonal to V. Evidently,
all the values of ¢, form a certain subspace c ¥, which we denote by
P, Weput P, = V,. We prolong this process by induetion. If ¢,, ..., gp_,
Y1, ooy Yro and P, ..., P! are defined, then we write the decomposition

Veor_1( X1y ooy Xpa) = @( Xy ooy Lprgy Y)+ 9 (Xygy ooy Xy, Y),

where y,_ (X, ...y Xpy, Y) is defined as the orthogonal projection,

k-1
¢ = ©F;
im1
We call @7 the pth osculating space of the immersion V—W at the point a.
Thus P¥ is spanned by values of gy.
LemMA 1. If k> 2, then we have v, (Xy, ..., Xpy Xpyy) ePET@PY.

Proof. We have g(gy(Xq, ..., Xz), @(¥q, ..., X)) =0 for arbitrary
vectors and %k # 1, g being an arbitrary element of &. If k <1—2, then
if follows that .

0 = Vzg(quk(-xly vy )y (Yo, --'aYI))
= g(Vzor(X1y ooy Xi)y 0r( ¥y .oy Yl))+
+9(prsr(Xay ooy Xy @101 (Y1y ooy Y3 )+ 9( Xay ooy Yoy Z))+27(Z)'0
= 0+0+9('f~'k(x1y coey Xi)y (g ey Xy Z)).

Thus (X, ..., X;, Z) is orthogonal to any value of @, , if k< 1—2.
1-2

In consequence this value of y; is always orthogonal to ® P.
]
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LeMMA 2. If s= 2, then the following identity holds:

VXa(Ps-l(' * Xa—l) - an—ltpe—l (cens -Xs—m Xa)
= EBx,x, Pa2l+r) Xs-2) + some vector from Q57

where R denotes a Riemannian curvature tensor of w, Bx y(*) = VyxVy—
Proof. The proof is easy and may be performed by a direct compu-
tation.

LeMwmA 3. The mapping

(Xayeees Tis Yuy ooy X)Xy ooy X5 Yoy ooy )
= Q(Q’k(xu vy Xp)y (XY q, on sy Yk))

is a symmelric (2k)-linear form.

Proof by induetion. If & =1, then the theorem is trivial. If
k = 2, then we have ¢,(X,, X,) = Vx, X; —y,(X;, X,) and we see that
Xy g(92(X1, X), 92( ¥y, X)) is linear. We have

Pa(Xyy Xo) —@a(Xy, Xy) = —[Xy, L] —pu(Xy, Xo) + 91 (X, X)
and _

go( X1y Xo; Y1y ¥p) — 92Xy, Xy; ¥y, ¥y) = 0.

This implies that the lemma is valid for ¥ = 2. Assume that it is valid
for k =1,...,s—1. If we make use of Lemma 2, then we obtain the
identities
ey Loy Xg5 Xuyoony Yo)—galo- oy HX,, Ko 15eiey X)
= g(an_l‘Pa—l(° voy Xg 1) — VX,,_I‘pa-l (cory Xo)y @5l vy Ys))
= g(-R_Ys,XB_l‘ps—z(- ey Ko )y Paleney Ys)) )
which imply our lemma.
Lemma 4. Let C be a C*-differentiable arc in W. Then there exists
a subclass G = @ such that: (i) if geGg, then the corresponding component y
of the connection form is zero on C, (ii) if geGy and heGg, then there exists
o positive number a such that we have g = ah on C. (CL. [2].)
Proof. We start with some parametrization ¢: 1—1,1[—-W of C.

We choose some ge@ and the corresponding j and solve the following
ordinary differential equation:

(5) vodp+dtodp = 0.

A C% solution ¢ satisfying an initial condition ¢(0) = 0 exists and is unique.
We assume g = ¢~ § on €. If y corresponds to ¢, then we have y = ¢+
+dt = 0. Then we prolong ¢ from C onto W so that it wholly remains
in @. Then we define Gy to be a class of g which are constructed in the
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above way. We sec that a change of the initial value of a solution of (5)
implies a multiplication of g by some funetion 'which is constant on C.

Let us remark that Lemma 4 yields a possibility of parallel trans-
port of angles along a curve and a possiblity to compare the lengths
of vectors along C.

Frenet’s rigging and curvatures. Let C and Gy be as above. We fix
some geG@n. We check a field C® of vectors X on C such that ¢(X, X) = 1.
We set I, = X and VyxX = x,1I,, where %, is real and I, is such that
g(I,, I,) = 1. g(I;,1,) = 0 and geQ, imply that I, is orthogonal to I,.

We prolong this process in construction ().
II,...,I,and %,,...,%_, are defined, then we write the decom-
position

1]
Voly = D) gLyt Dyp.
i=1

By the same argument as in Lemma 1 we have ¢;= 0 for j < s¢—1 and
from g(I;, I;) = é; we deduce that ¢; = 0 and ¢, = —x,_o . Thus we
obtain a sequence of osculating vector spaces along C, L, < ... = L,...,
each L, being spanned by vectors I,, ..., I,. If at some point of our arc
we have L, = L,,,, then L., = L,,, =... and %, = 0 for s> ¢q. Then
we may write

-----------------------

The above system of equalities has not any invariant sense because all
I, and all », depend on the choice of g. If we check any other geGy and
we fix I, so that g(I,, I,) = 1, then we have I, = al;, where a = const,
Thus we have

lefl =21, = a2171111 = ax, - al,
and in consequence I, = al, and %, = ax,. If 'we prolong this process,
then we obtain I, = aI, and #, = ax,. We may formulate the following:

PrOPOSITION. Let us fix a point acC. Then there exist a # 0 and
vectors J, = al,, ..., J, = al, such that

VJIJ]. = liz, V"qu = _lil—{‘sza,
(B) e e e e e e e
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The numbers k,, ..., k,_, have a geometrical meaning because they do not
depend on the choice of g from Gp. Thus they may be considered as curva-
tures of C.

GENERALIZED THEOREM OF MEUSNIER. We consider the following
situation: C is an arc in the manifold V and V is a submanifold in a Weyl
manifold W. Let a<C be fized. We construct a sequence of osculating sub-
spaces. QL, Q%, ... of V and a sequence of vectors J,, dJ., ... which satisfy (6).
We denote the angle between J;, and Q¥ ~'by v,.. Let g<Gy be such that g(J,, J,)
= 1. Then we have al a

Ior1(J1s oy J13 g ooey I1) = (Ky oo Bpsing,,,)?

forp=1,...,q—1.
Proof. By easy induction we obtain from the Proposition

»
Py ooe Vady = Z COT 4+ Fy . Ty
_]'j_d ‘i-’l

for p =1,...,¢—1. If we split V; ... V;dJ, into g,,,(Jy,...,d,) and

r
¥p(J1, ..., J,) according to construction (#), then we see that >’ el J, enters
i=1
into the y-component. By the definition of »,,, we have

Ppir{J1y ey dy) = k... k, (orthogonal projection of J,,,to P4*').
Hence
Gpi1(hy ooy disdyy iy dh)
= g(Pps1(T1y ooy 1)y Ppgr (1y ooy T1)) (B oo Bp8inD, )%
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