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In 1965, J. Browkin asked whether there exists an infinite sequence
@yy gy ...y Gy, ... Of integers in Q(¢) such that, for all ideals ¢ of @ (7),
integers a,, a,, ..., ay represent all residue classes modulo g¢. Clearly,
the sequence of natural numbers is such a sequence in .

In 1966, E. G. Straus answered this question in the negative. In
1969, B. Wantula has proved in an unpublished M. A. dissertation that-
no such sequence exists in any quadratic field.

In 1969, A. Schinzel proposed the following problem at the Institute
on Number Theory at Stony Brook 1968/69:

Let K be an algebraic number field. Does there exist a sequence
{a;} of integers in K such that, for every ideal q of K, integers a,, a,, ..., ayq
represent all residue classes modulo ¢?

In 1971, the author proved that there exists no such sequence in
any pure cubic field. The same year D. Barsky proved that, for any alge-
braic number field of degree greater than one, no such sequence exists
(see [1]). ‘ .

Now the natural question arises whether, for a given algebraic number
field K, there is a maximal length of sequences {a;}' such that, for
all ideals ¢, the min(m, N (g)) first terras represent different residue classes
modulo ¢? Clearly, <0, 1> is such a sequence of length 2 in any algebraic
number field. If such a maximal length exists for K, we call it m(K),
otherwise we say that m(K) = oc.

In the above-mentioned papers it has been shown that m(K) < oo
if K is a quadratic or a pure cubic field. In the paper of the author there
is a proof due to A. Schinzel that m(K) = 4if K = Q( i/ 2) and all sequences
of maximal length are actually found.

I would like to thank Prof. Schinzel for many valuable suggestions
and help in the preparation of this manuseript.
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In 1971, Latham proved (see [4]) that m(K) = 2 for all cubic fields
with negative discriminant with only finitely many possible exceptions.

For pure cubic fields, he proved that m(K) = 2 if K # Q(i/é) and gave
an independent proof of the above-mentioned result concerning Q (}/ 2).

Latham also constructed infinite classes of cubic fields with positive
discriminants such that m(K) = 2 and did the same for quartic fields.

THEOREM 1. A sequence of distinct terms {a;}]' has the property that,
for every initial segment {a;}7" and for every ideal q such that N (q) > m,
Qyy Qgy ...y @, represent m different residue classes modulo q if and only
if |N(a; —a;)| < max(s, j) for all ¢,j < m. A

Proof. Suppose that a sequence {a,}T' of distinct integers of K has
the required property and that there exist ¢, j < m such that |N(a;—a;)|
> max(i,j). Consider the initial segment {a,}™*¢:) and the principal
ideal ¢ = (a; — a;). By a well-known theorem (see [3], § 27, p. 28), |N (a; — a;)]
= N(q) > max(¢, j), and 80 @, ..., Gpax,; Would represent max(i, j)
different residue classes modulo (a;—a;) which is absurd since
a; = a; (mod(a;— ay)).

On the other hand, suppose that |N (a; — a;)| < max (3, j) for all 4, j <m
and that there exist an initial segment {a,}7* and an ideal ¢ such that
N(q) = m, so that a,,...,a, represent at most m —1 residue classes
modulo ¢. Suppose that a; =a; (mod ¢), ¢ #j; thus g|(a;—a;) which
implies that |N(a;—a;)| = IN(q), le N. Since a; # a; if i % j and the
norm of a number is zero if and only if the number- is zero, we have, clearly,
1 #0, and so |N(a;—a;)| > N(¢q). Now max(s,j)> |N(a;—a;)| and so
max (¢, j) > N (q) = m which is, clearly, impossible since ¢ and j are indices
for two of the first m numbers.

Every sequence satisfying the equivalent conditions given in Theorem 1
will be called an F-sequence of length m. The problem of Schinzel is, clearly,
equivalent to the problem of existence of an infinite F-sequence.

Definition 1. An F-sequence {a;} is basal if a, =0 and a, = 1.
The following lemma gives sense to this definition:

LEMMA 1. To every F-sequence of integers of K there corresponds in K
a basal F-sequence of the same length.

Proof. Consider an F-sequence {a;}' and put a; = a;—a,. Then,
clearly, a, = 0 and {a; )™ is an F-sequence. By Theorem 1,

1> |N(a,—ay)| = |N(a,—0)| = |N(a,)l,

and thus N (a;) = 41 and a;~' is an integer of K. We set a; = a;(a;)"".
Clearly, {a;}7 is a basal F-sequence.
In the sequel, m* will denote the product of all distinct primes di-

viding a rational integer m, p an odd prime, and {, a p-th root of unity.
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Definition 2. A pure extension @ (}/a) of prime-degree p is of class A
if there exists a rational integer m such that m = mimj ... m3~}, where m;
are positive squarefree and pairwise coprime rational integers, Q(}/a)

= Qﬁ/:r;), and
(myms ... mp=3)P~! —mpZ1 # 0 (mod p?)

and is of class B otherwise. ji’/'m, will then be called a reduced gemerator
of Q(Va). \

Clearly, m is a positive rational integer not divisible by the p-th
power of any prime. Moreover, m can be written uniquely in the form
m = mym; ... m5_}, where m; are positive squarefree pairwise coprime
rational integers. This follows easily from the fundamental theorem of
arithmetics. In the sequel, any such representation will be supposed to
fulfill these cofditions. Obviously, every pure extension has at least
one reduced generator. In order to prove that the definition makes sense,
i.e., that any pure extension of prime-degree belongs to one and only
.one of the classes A and B, it is enough to show that if ¥m and ¥/m’

are two reduced genéra,tors of Q(%) and
m=myms...m51, m =mim’...mP},
then
(mym; ... mEZ2)P~! = mB=} (mod p?)
iff.
(mim? ... mP-HP~! = mP} (mod p?).

In order to establish this we need the following lemma:

LEMMA 2. Fields Q (¥ a) and Q(V/b) are identical if and only if b = a’c”,
where 0 < r< p, a,b,ceQ, ‘f/& and 1}’/5 reals.

Proof. The “if’’ part is trivial.

In order to prove the remainder, let us observe that, by a result of
Siegel (see [5]), the degree of Q(’f/ﬁ, 11'/5) over Q(’]’/;z—) is equal to the
least positive integer d such that (z]'/l;,)d = (]])/E)'c for a suitable integer r
and a suitable ¢eQ. If Zi/b_eQﬁ’/E), we get at once b =a'c?, 0 <r<op
and ce@Q.

Now suppose that ’]’/_w; and ‘?/W are two reduced generators of @ (’i’/a_)
# @. By Lemma 2, f’m’ = m"e?, where e and f are rational positive coprime
integers and 0 < r < p. It follows that e = 1. Now, if m = m;m; ... m5_],
we have

v SIS ST (D=1 __ T2 (p Ay Ay Ap—1\p
fm’ =mimy ... mP = mimy ... mEP(m my? .. m PP,

where rj = 4;p +7j, and 0 < rj < p. It follows that m’ = m?mﬁ—’ oo mPhr,
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With the same argument it follows that if m’ = m*m,’ ... m®', there
exists an 8, 0 < 8 < p, such that

m =mpEm¥...mP P, s = ip+is, 0< 8i<p.
Moreover, since 0 < r < p, r_i¢r_j if i +#j 1<, and j<p—1.

Hence m; = m;, where j is such that rj = ¢ (mod p). Using the fact that

there exists an r such that 0 < r < p and m’ = m{mZ ... m®-}r, we show
that '

(mim; ... mEZ5)P~! = mbZ] (mod p?)
implies
(my'my” ... mP5)P™H = mP (mod p?),
and this, in view of the symmetry between m and m’, completes the proof
that any pure extension of prime-degree belongs to oge and only one
of the classes A and B.
Suppose that

1,.2 p—2\p—-1 __ p—-1
(mIM2 s e mp_z)p = mp_l (mOd pz).
By regrouping, we get
p—1 1 k-1 k+1 p—-2\p—1 __ p—1
m”z( )(ml e mk_] se mk+l LY mp_g) = mp__l (mOd pz)-

Since we may suppose that m, = 0 (mod p),
(m ... mEZImEdY ..o mEZPTY = m2Tim P (mod p?).

Now, if r = 1, then m = m’ and the proof follows directly from the

fact that, for any reduced generator zl’/m, m can be written uniquely.in
the form m = mim; ... m5-]. So we may suppose that 1 < r < p. Hence,
there exists an I, 1 <1< p—2, such that Ir = p—1 (mod p). Moreover,
if ¢ =j (mod p), then

a'P=D) = q/®=Y) (mod p2) for all a.
Using these observations, we get, with k = I,

.72 'p-2yp—-1 __ r k—1)r .. (k+1)r p—2)r . (P—1)r\D—1
(mmt ... mP; = (m] ... mEETmED L mPm I mP
_ — 2\ ~12
= (m!...mEZimit] .. mBZ PP

—k(p— 1y (p—1)2 1) —kn(p—
= (mg P D m2]y mP DT = mPE=) g =)
= m;® " (mod p?).

Now a® Y = a=®-Y (mod p?). Hence, m;® " = m?~! (mod p?).
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The basic tool which will be used in this paper is a result of West-
lund [7] describing the integral basis for any pure field in question. It can
be stated in the following form:

(1) If Q(’]’/E) is of class A, then (1, a,, as, ..., a,_,) is an integral basis,

.and if Q(’f/ﬁ) is of class B, then (y, a,, as, ..., a,_,) is an integral
basis,

1 _ _
y =;(a{’_1+baf b a4 1),

and
iy, 92 Tp—1\1/p
= (m;y my ... my )",

where i, = 81 (mod p), 0<is<p, 1<s<p—1, 1<t1<p—1,
b=mym;...mb_3, and m = mim;... m57].
In this paper we prove the following general theorem:
THEOREM 2. For any prime p, there exist only finitely many pure
extensions of degree p which may contain F-sequences of length greater than 2.
We also give the proof that m(K ) =2 if K is a pure cubic field
different from Q(}/2), Q(V/3), Q(v28), Q(]/62) and @()/109). The only
exceptional case that will be treated is Q(i/ 2), where we give a proof

of A. Schinzel that @ (]/ 2) contains exactly four basal F-sequences of
length 4 and none of length greater than 4.

For pure fields of degree 5 and of class A, we have the following
result:

THEOREM 3. If K is any pure field of degree 5 and of class A different
from Q(]/2‘3’), where 0 < i, j <4, and i+j > 0, then m(K) = 2.

In the proof of Theorem 3 we use the following curious observation:

(2) If K = Q(jf/g) is of class A with m =0 (mod p), then m(K) > 2
implies 2” =2 (mod p?).

THEOREM 4. If K is of class A, then the norm modulo p is a homo-
morphism from the ring of integers of K onto Z,, the ring of residue classes
modulo p.

COROLLARY. A pure field of degree p > 3 and of class A does not contain
two units with the sum equal to another unit.

As we easily see from Theorem 1, the Corollary implies that any
field K of class A and of degree greater than 3 must contain a principal
ideal of norm 2 if m(K) > 2. This is, of course, the case where K = @ (1'9/5)

It could be interesting to decide when pure extension contains a principal
ideal of norm 2. (P 894)
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Lemmas 3-9 will help us to establish some useful features of the
norm forms in pure extensions of prime degree.

LEMMA 3. If m&+n8o+...4+n, 157 e Z with n;eZ for all i,
1<i<p-—1, then n, =n, = ... =n,_,.

Proof. The minimal polynomial f(#) =1+x+2*+...+27" of ¢,
is of degree p — 1. Since, clearly, any polynomial of degree p —1 vanishing
for # = {, is proportional to f(x), the lemma follows.

M
LemMA 4. If Y &e Z with M =0 (mod p), then
i=1

2;:‘ =0 (mod p).

M
ZC? = no+n1Cp+n2€;+---+n _1:’5—1 =1,

n =M, mneZ,0<i<p-—1,leZ,

whence %, = n, = ... = n,_, by Lemma 2, and
M
C? = No+ny({p+ G+ .+ 7Y = ng—m,.
i=1
Now,
p-—-1
M= ) n =mn+(p—1)n, =0 (mod p)
i=0
and
Ne+(p—1)n, = ny—n, (mod p).
Hence

M

D) ¢ =0 (mod p)

i=1
and Lemma 4 follows.
LEMMA 5. There is

p—-1
T] ot 9:16+ 9ol +... 4y, L2V

i=0
= yg+?/f+---+?/£—l+PF(f'/oa Y1y +++9 Yp—-1)s

where F (Yo, Y1y ...y Yp_1) 8 a homogeneous polynomial of degree p in
Yos Y1y --+y Yp_1 With integer coefficients such that at least two y.’s occur in
each term.
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Proof. By taking the product, we get y7+y?+...4+yl_ .+
+H (Yo, Y1y -++3 Yp—1) With every term of H of the form

M . ) M . p—1
(X&) et 92, ez, 0<i,<p-1, Yi,=p
j=1 j=1

8=0

Clearly, at least two ¢,’s are different from 0, say ¢, and i,.. Since
u - (P\(P—%
i\ )

(f) = 0 (mod p).

and p is prime,

Consequently, M =0 (mod p). Lemma 4 applies and the proof of
Lemma 5 is complete.

LEMMA 6. If (i’/7n7¢)ez with me Z and y an algebraic integer, then
ji/m*zp) = 0 (mod m*).

Proof. (}/m*y)e Z implies that (}/m*y)? = m*y?eZ, and s0 y*eQ.
Since y is an algebraic integer, it follows that y”e¢ Z. Hence, every prime

dividing m* must divide jl]’/m"z,u and the lemma follows.

We are now able to establish some properties of the norm form.
Let a be an integer of K. If K is of class A, then, by (1), ¢ = xy+ 2,0, +
+...4+a,_,a,_, with x;¢ Z. Thus

p—1
N(a) = n (wo—}-l,’;wlal—}—cziwzaz-l-...).

=0

Substituting x;e; for y;, a =1, Lemma 5 applies and we get
N(a) = af + (a1 )" +... + (ap_1%p_1)" + PF (Toa0, Z105, ...y Tp_,ap_,),

where at least two @, a; occur in each term of ¥. Since a; 3 V m* is an algebraic
integer for each 7, 1 <i< p—1, we have, clearly,

o —
PF(wgag, T1ayy ...y Tp_1 @ 1) = pl/m*’»”y

where y (2, %, ..., Z,_,) i8 an algebraic integer for all (x,, z,..., ¥,_,) e Z*.
The expression

1 ) _
; (N(a)— (2 (aiwi)p)_wfl;) = F(Xgagy 101y ¢oey Tp_1a,_1) = zl’/m*'l’
i=1
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is a rational number, and so a rational integer for all (z,, xy, ..., z,_,)eZ”.
Hence Lemma 6 applies and we get

If K is of class 4, and ¢ = 2y+ 2,0, +...4+%,_,a,_,, then

(3) N(a) = ag +alaf +... +ap_jap_; +pm*y' (2o, @y, Tp_1)

ceey Tp_y
with y'(2,, @4, ..., ¥,_;) integer for all (z,, x,, ..., ®,_,)e Z”*.
If K is of class B,
p-1
zo(1+ 3 aib?=iY)
a = =1 +za,+...+2, 10, , With x;¢Z.

y4
We have

p—1
ap = x, (1 —|—2 a’;bp_i“l) +pri0+... + D2y Q.
: i=1

Now
p-1 /
. . . _ . . lp
ai = (mimi ... mP V)P =( I l m};") .
8=1

Since, by (1), ¢, = ¢s (mod p), ¢, + A;,p = s with A;;¢ Z. Hence

p—1 i p—1 p-—1
af = ([] mf” ([ ] m) = o (] ] me¥)
s=] 8=1 s=1
and
p—1

p—1
2y v = Yl
-1

=1

p—-1 1
ms"’) P11,
8=1

Put, for abbreviation,

p-1
([T me*) b7=2=* = b..
s§=1

We get
ap = Zo+ (P& + @oby) ay ... + (P2p_, + Zeby_y) ap_, -

With y, = px;4+x,b; and y, = 2,, the same argument as in (3)
applies and we get

(4) N(ap) = p" N (a)
=ys+ylal +...+yp_1a5 1 +DPM*Y (Yo5 Y1y -y Yp_1)

with 9'(Yoy Y15 .-+ Yp—,) integer for all (yo, Y1, ..., Yp_1)e Z”.

Suppose that a pure field K of prime degree contains an F-sequence
of length greater than 2. Since every initial segment of an F-sequence
is also an F'-sequence, K contains an F-sequence of length 3. By Lemma 1,
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it also contains a basal F-sequence of length 3, say <0, 1, a,>. Theorem 1
immediately implies

(5) [N(ag)l <2 and |N(a—1) <2.

Our method will now consist in assigning a congruence system de-
pendent on the class of K to every pair of values (N (a;), N(az—1)).
The following lemmas will considerably diminish the number of classes

to be investigated.

LEMMA 7. For all a in real pure extensions of odd degree, we have
sgn N (a) = sgna.

Proof. We have N(a) = aa™a® ... o™, where o, 1 < i < n, denote
the conjugates of K. Since every complex number appears in the product
together with its complex conjugate, the lemma follows.

LeEMMA 8. For all algebraic number fields K of odd degree, the following
statements are equivalent:

(i) There exists an ae K such that {N(a), N(a—1)> = {a, b).

(ii) There exists a fe K such that <N(B), N(f—1)) = {(—b, —a).

Proof. Suppose that (N(a), N(a—1)> =<a, db) and put g =1—a.
Then N(1—a) = —N(—(1—a)) = —N(a—1) = —b, and N(1—a—1)
= N(—a) = —a, since K is of odd degree. Thus (i) implies (ii). Con-
versely, suppose that (N (8), N(f—1)) = {(—b, —a) and put a =1-—8.
Clearly, N(a) =a and N(a—1) = b. Thus (ii) implies (i).

LEMMA 9. For all odd primes p,
(#*—2,(z—1)P—2) =1, (2"—2,(z—1)"—1) =1,
(" —2, (@—1)P+1) =1, (w”—2,(w.—1)”+2) =1,
(? —1,(x—1)?—2) =1, (*—1,(z—1)"—1) =1,
(#* -1, (—1)"+1) = 1.

Proof. If one of the numbers a and b is equal to +2 and the other
is equal to +1, the polynomials ¥ —a and (r—1)”—b are coprime, since
exactly one of them is irreducible.

a. (¢®—2,(x—1)*—2) = 1.

For if 2»—2 = 0, then x« =1]’/§C2, and so (Y2¢ —1)? =2 would
imply that }/2¢)—1 =¥/2¢. Hence ¥/2(Li —¢i) =1, a contradiction.

b. (2 —2, (r—1)"+2) = 1.

Assuming the contrary we get, by the same argument, 1’/5 &+
+¥2¢ =1, a contradiction.

. (#?—1,(x—1)*—1) = 1.

7 — Colloquium Mathematicum XXX.1
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~ For a® = 1 implies v = {; and (¢ —1)” = 1 implies v —1 = ). Hence
{,— ¢, =1, a contradiction.
d. (#*—1, (®—1)"+1) = 1.
Asgsuming the contrary we get, by a similar argument, {f+ ¢ =1,
a contradiction.
Clearly, we have

(6) (2*—a,(@—1)"—b) =1 iff (¢®°—pPa,(x—p)’—p?b) =1.
Since, clearly, a? =0 (mod m*) for all 4, 1 <i<p—1, (3) and (4) give
(7) N(a) =¥ (mod m*)  if K is of class 4,
(8) PPN (a) = 28 (mod m*) if K is of class B.
Suppose that K contains an F-sequence of length greater than 2.
Then, as we have already shown in (5), we may suppose that K contains
an F-sequence {a;} subject to |N(a5)] <2 and |N(a;—1)| < 2. Moreover,

since all terms in an F-sequence are distinct and the norm of an algebraic
integer is 0 if and only if the integer is 0, we are left with the possibilities

—2 N(ay) <0, O0< N(ay)) <2, —2<N(a3—1)<O,
0< N(az—1)<2.

By Lemma 7, we may exclude all pairs of values {N(as), N(a;—1)>
such that N(a;—1) > 0 and N(a,) < 0, since, otherwise, sgn.N(a;—1)
=1 = sgn(a;—1) and sgn N (a;) = —1 implies sgna; = —1 = sgn(a;—1).

By Lemma 8, (N (a), N(a—1)> = {a, b) yields the same conclusions
about K as (N(f), N(B—1)> =<(—b, —a). Hence it is sufficient to
consider (N (a;), N(as—1)> such that N (as)+ N(as—1) > 0.

All these considerations leave us with the following cases:

(9) <N(ay), N(a;—1))
= <2’ 2)7 <2’ 1>a <1’ 2>’ <17 1>7 <27 —1>’ <27 _2>’ <1’ "1>-

For every pair of values, we have the congruence systems. Namely,
if ag =xy+...+2,_,a,_,, we have the system
(10) 2§ = N(as) (mod m*), (2,—1)® = N(a;—1) (mod m*)

derived from (7) and (1); and, if

az = 2o +...+ (PTp_1+ Bobp_1) 2p, :
p P

we have the system
(11) 2§ = N(as)p® (mod m*), (2,—p)® = N(a;—1)p® (mod m*)
derived from (8) and (1).
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Proof of Theorem 2. The theorem is true when p = 2 (it follows
from the unpublished work of Wantula). If p is an odd prime, then (10),
(11) and a well-known identity (see [6], p. 106) imply that m* must divide
the resultant of the corresponding pair of polynomials

(&) — N(ay), (x,—1)°— N(az—1))
or
(@ —pP N (as), (v,—p)’ —p* N(a;—1)).

From Lemma 9 and formula (6) it follows that the resultant is different
from 0. Therefore, the divisibility can hold only for finitely many values
of m*. To every m* there correspond finitely many fields and Theorem 2
follows.

Proof of Theorem 4. We develop N(a+f) using (3) and, for
a =&+ T o +...+ Ty 10y, '

B=YotY10:1+...+Yp_185_;,
we get

N(a+p) = (@ +Yo)” + (@ +y1) el +... + (€p_, + Yp_1)" ap_, (mod p).
Hence
N(a+p) =a7+ys+atal +yTal +...+ a5 105 1 +yp 1 0f
= N(a)+ N () (mod p).
The norm is 6nto modulo p since if ae Z, then N (a) = a® = a (mod p).
The homomorphism property under multiplication follows directly from

N(af) = N(a)N(B) = N(a)N(B) (mod p), and the proof of the theorem
is complete.

Proof of the Corollary. If a and f are units, then
N(a+p) = N(a)+N(B) =0,2—2 (mod p)

and the Corollary follows.
Theorem 4 implies that if a;e K and K is of class 4, then

(12) N(az—1) = N(az)—1 (mod p).

The only pairs listed in (9) satisfying (12) are (2,1) if p > 3 and
<{2,1> and <2, —2> if p = 3. We have

(13) If K is a pure field of class A that contains an F-sequence of length
greater than 2, say <0, 1, a;>, then

i=p—1
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must satisfy the following conditions:

(14) x; =2 (mod m*), (w,—1)’ =1 (mod m*) if p>3
or

(15) 2§ =2 (mod m*), (2,—1)’ = —2 (mod m*) if p =3.

Suppose that K = Q(’]’/m) is of class A and contains an F-sequence
of length greater than 2 with m = 0 (mod p). First of all, (13) applies
and we have <0, 1, a;> as a basal F-sequence in K, a; = o+ 2,0, +...+
+o,_,a,_,, and ay satisfies the following conditions:

N(a;) =2 and N(a;—1) =1 if p> 3, or

N(a;) =2 and N(a;—1) = —2 if p = 3.

We have, by (3),

N(as) =2 =af+afal +... +@p_1ap_1 +pm*y’ (To, Ty .-y Tp_,y)

where o' (%, %1, ...,%,_,) I8 integer for all (xy,®,,...,2,_;)e Z®. Since
m = 0 (mod p), m* =0 (mod p). Hence we have the congruences
(16) oy + pF (X1, Tgy -0y Bp_y) =2 (mod p?),

(o —1)° + pF (01, gy ...y Bp_y) =1 (mod p?),

where F(x,, %y, ..., %,_;)e Z, Or
23+ 3G (2, ;) =2 (mod 9),

(17)
(®y—1)3+ 3G (2,, ©;) = —2 (mod 9),

where G(z,,2,)e Z. However, (17) is inconsistent, since - 3G (x,, Z,)
='2 (mod 9) implies z, =2 (mod 3), and so 3G(#,,x,) =3 (mod 9).
However, the congruence (z,—1)3+43G(xy,;) = —2 (mod 9) implies
3G (%, ;) = 6 (mod 9). Congruences (16) imply z, = 2 (mod p), and so
(wo—1)° + pF (@, @, ..., Tp—y) =1 (mod p?)
yields
PF(2y, @2y ...y Zp_;) = 0 (mod p?).
Hence z} =2 =2 (mod p2), which proves the assertion in (2).
p = 3.
A. Suppose that K is a pure cubic field of class A. Then (13) applies
and we get
zy = 2 (mod m*), 2y =2 (mod m*),
(18) or
(g—1)3 =1 (mod m*), (g—1)2 = —2 (mod m*).

These two systems imply m* = 2 or m* = 5 with the corresponding

fields @(}/2) and Q(V/5).
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B. Suppose that K is a pure cubic field of class B. By (11), we have
the following congruence system:

(19) @ = 27N (a,) (mod m*), (z,—3)® = 27N (a;—1) (mod m*).

We have m* = m,m, and, since K is of class B, m} = mZ (mod 9).
Hence m* == 0 (mod 3), and (19) reduces to

(20) 23 = 27a (mod m*), «}—3x, =3P (mod m*),

where ¢ = N (a;) and 8 = N(aa)—N(aa—l)—l.- It follows that o3 = 3%+
+3pxy = 27a (mod m*), whence z}+ pz, = 9a (mod m*). Since xi — 3z,
= 38 (mod m*), we get

(B+3)xy = 9a—38 (mod m*).
Thus (B+ 3)2z) = 9(3a—p)? (mod m*) and, since
(B+3)2a = 3(B+3)2m,+3B(B+3)? (mod m*),
it follows that
9(301—/3)2—3-'(ﬂ+3)'3(3a—ﬁ)—3/3(13+3.)2 = y'(a, f) =0 (mod m*).
Since m #* 0 (mod 3), we have
y'(a, B) =3(Ba—p)*—(B+3)-3(3a—pf)—B(B+3)* =0 (mod m*).

The following table gives the valués of y'(a, f), when (N (a3), N (a; —1))
takes the values given in (9):

N(a,—1) a B v (a B) || N(as—1) a B |viap
2 2 —1 109 -1 2 2 —62
2 1 —2 62 —1 1 1 —28
1 2 0 54 —2 2 3 —1356
1 1 —1 28 |

Of these values only m* equal to 109, 62 and 28 correspond to fields
of class B. The corresponding fields.are Q(]/ 109), Q(]/ 62) and Q(;/ 28).

Now we consider in detail the case of K = Q(}/2).

LEMMA 10. Let n = 1/ 2. AUl integral solutions of the equations

(@) (A +n+9)"—Q+n+93)" =1,

(b) +1)L+n+93)"—n1+n+93)" =1,

(¢) ”2(L+n+9)"—(n+1)(1+n+93)" =1,

@) ?A4+n+92)"+n+1)A+n+93)" =1
are n=m=1 or n =0, m= —1 for (a); n =m =0 for (b); n =0,
m = —1 for (¢); and n» = m = —1 for (d).
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Proof. If m > 0, then

n(1+n+93)"—1+n+99)™

>1 if n>m,
=@+n+n)" @ +n+93)"" =111 = Q49+ i n =m,
<0 if n< m;
(n+1) A +n+2%" =91 +9+9%)"
>1 if n>m,
=147+ [(n+1)A+9+9)"""—9]] = Q+9+9)" if n=m,
<0 if n <m;

A +n+93)"—(+1)(1+94+92)"
>1 if n>m,

=(1 2y (2 (] =m_ ]
A+7+22)"[n2(1+9+9n?) U] ]<0 it m<m;

n2A+n+93)"+n+1)A+9+92)" > 1.

Thus (a) implies m =n = 1, (b) implies m = n = 0, and (¢) and (d)
are impossible.
If m < 0, then

> (1+9+9H)™ iftn>0,
nl+n+7)"—1 = L+9+93)~" if n =0,
<0 if n<O0;

>n(l+n+9)" i n>0,

+1)(1+9+73)"—1 .
(n+1)A+n+n?) <0 it n<0;

> (n+1)A+n+23)" if n >0,

N1 4+n+9)"—17 =@+ A +9+9)""  if n=0,
<0 if n<O;
>1 if n>0,
m ) =1+M+1)[Q+n+n3)"—
2A+n+9*)"+ (0 +1) A +n+n?) :
e k —(tn+n)] Hw= -1,
<1 if n< —1.
Thus (a) implies » = 0, m = —1, (b) is impossible, (¢) implies n» = 0,

m = —1, and (d) implies » = m = —1.
Let Q(i/ 2) contain an F-sequence of length 5, say <0, 1, ay, a4, as),
with a; = @; +y;n+2;9% @;,y;, %€ Z. Since 2} —x; =0 (mod 2), we get,
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by (12), N(a;—1) = N(aj)—l (mod 6). Therefore,

() N(a;—1) = N(a;)—1, or

(& N(a,—1) = N(a)—T1, or

(8) N(a;—1) = N(a;)+5, or

(b) |N(a,—1)—N(a)|+1>12.

In view of |N(a;)| <j—1 and |N(a;—1)| <j—1, (e) gives

(i) N(ay) =2, N(a;—1) =1 or N(a;) = —1, N(a;—1) = —2 for
3<j<5, or

(j) N(ay) =3, N(a;—1) =2 or N(a;) = —2, N(a;—1) = —3 for
4<j<5b, or

(k) N(a;) =4, N(a;—1) =3 or N(a;) = —3, N(a;—1) = —4 for j = 5.

Relation (f) gives 7 < 2(j—1), and

(1) N(a;) =4, N(a;—1) = —3 or N(a;) =3, N(a;—1) = —4 (j = 5).

Equality (g) implies N(a;) <0< N(a;—1) and, by Lemma 7,
a; < 0 < a;—1 which is impossible.

Inequality (h) implies 11 < 2(j—1), j > 7, which is also impossible.

Thus we are left with (i), (j), (k) or (1).
It follows from the table of Delone and Faddeev [2] that 1+ 5+ %2

is the fundamental unit of Q(i‘/ 2_); moreover, the equalities (2) = ()3
and (3) = (n+1)3 show that () and (n+1) are the only ideals of Q(i"/z)
with norms 2 and 3, respectively. Therefore,

(i) gives a; = n(1+n+9%)" or —(1+7n+2%)™ (3 <j<b5), where m
and n satisfy (a); '

(j) gives a; = (1+n)A+n+9")" or —nl+y+9)" (4<j<I),
where m and n satisfy (b);

(k) gives a; = n2(1+n+9%)" or (1 +9)(1+n+2*)™ (j = 5), where m
and » satisfy (c).

(1) gives a; = n*(1+7n+7")" or (L+n)(1-+n+7")" (j = 5), where
m and » satisfy (d). ’

In virtue of Lemma 10, this implies

a4 =1 2+n+9% 1—9, —1—n—9*> 3<j<H), or
@ =1+n —n (4<j<?) or

a; =n% 1—9% 2—n% n*—1 (j =5).

The conditions 0 < |[N(a,)], |[N(a;—1)] <2,0< |N(a;,—az)] <3 and
0 < |N(as—a,)| < 4, a5 # a,, imply that there are only four possibilities
for <(a,, a,, a;>, namely
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nyl+myn%,  <24+n+n%h —1l—n—n% —n),
A=ny —n, 1=9%, (—=1—n—n% 2+9+9% 1+n).
However, in each of these cases |N(a;—a,)| = 5, which provés that
there is no F-sequence of length 5 in Q(i/ 2).

Proof of Theorem 3. Suppose that p =5 and K is of class A.
If K contains an F-sequence of length greater than 2, then (13) holds
and we have

(21) 2y =2 (mod m*), (#,—1)° =1 (mod m*).

Since the resultant of 25 —2 and (x,—1)°—1 is +2-3-5° it follows
that m* equal to 2, 3, 5,23, 25,35 or 2-3-5. Now, since 2° # 2 (mod 5°),
we have, by (2), m 0 (mod 5), and whence m* %= 0 (mod 5).
Hence m* = 2, 3 or 2-3. If m* equal to 2, 3 and 6, then (21) is solvable.
To these values of m* there correspond the following fields:

Q(V2), Q(V3), @(¥V/2"3), 0<i<5.

This completes the proof of the theorem.
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