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Several theorems dealing with the notion of confluent mappings
and their properties related to the procedure of forming the union of
spaces have been recently established in [3] and [4]. One of them is
generalized in the present paper (compare Corollary 1) and we show that
a generalization of another one is impossible by providing an example.
All spaces which we discuss here are compact metric spaces and all map-
pings are assumed to be continuous functions. A mapping is called con-
fluent [1] provided each component of the inverse image of each con-
tinuum is mapped onto that continuum. The very nature of this defini-
tion seems to indicate that, in any theorem deriving the confluency of
a mapping from the confluency of its restrictions to some sets whose
union is the domain space, these sets ought to be the inverse images
of some subsets of the range space, which actually reduces the problem
to representing the latter space as the union of sets satisfying appropriate
conditions. Also, probably very little can be said in a situation where
one has the union of an uncountable collection of such sets. In our result,
the range space is represented as the union of countably many closed
subsets and the conditions are imposed on their intersections. Well-
-known examples of mappings [3] can be used to show that neither of
these conditions can be omitted. Before stating and proving our result
we have to introduce a notation and prove a lemma.

Suppose K is a continuum and B < K is a non-empty closed subset.
For each n =1,2,..., let G,(B) be the open neighbourhood of B in
K defined by the formula :

G, (B) = {yeK: dist(y, B)< n™'},

and, for each point ye K\ B, let n(y) be the least positive integer such
that n(y)~' < dist(y, B). Then y ¢ K\@G,(B) for n(y) < n, and let C,(B, y)
be the component of K\G,(B) which contains y. Observe that G,,,(B)
< @,(B) for n =1,2,..., whence

Cn(B,y) < Cpyi(B,y) for n(y) < n.
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This means that, for each point ye K\ B, the sets C,(B, y) constitute
an increasing sequence of subcontinua of K. Consequently, their union

C(B,y) = U C,(B,y)
n=n(y)

is a connected subset of K\ B to which the point y belongs. Since K is
a continuum, each component C,,(B, y) meets the boundary of the set
@, (B) in K '(see [2], p. 172), so that the closure clC(B, y) of C(B, y)
meets B for ye K\ B.

LemMA 1. If K i8 a continuum and By, B, < K are non-empty disjoint
closed subsets, then there exists a point ye K\ (B,u B,) such that

B;nclC(Byu B,,y) #9 for ¢ =0,1.

Proof. There exists a continuum X < K which is irreducibly con-
nected between B,NX and B, nX; that is B,NnX # @ for +: =0,1 and
X is an irreducible continuum between each two points p, and p, such
that p;eB;,NnX for 1 = 0,1 (see [2], p. 219 and 222). We consider two
cases as follows:

Case 1. X is indecomposable. Then there exists a composant C of
X such that Cn(B,u B,) = @ (ibidem, p. 223). Let y<C be a point. Since
C is the union of some continua containing y, we have C < C(B,uU By, ¥).
But the composant C being dense in X, we conclude (for 7 = 0, 1) that

Case 2. X is decomposable. Then there exists a decomposition
X = X,ulX, of X into two proper subcontinua X, and X, of X. Since
X is irreducible between each pair of points selected from B,NX and
B, n X, respectively, neither X, nor X, meets both B, and B,. Without
loss of generality, we can assume that B;NX < X; for ¢+ = 0, 1. Thus
also BonX, =0 = B, nX, and let yeX,NX,; be a point. Denote by
C; the set C(B; X, y) as applied to K = X; (¢ = 0, 1). Then the closure
of 0; meets B;NnX and C; is the union of some continua which eontain
y and are contained in X;\B;, whence also in X;\(B,u B,). It follows
that C; < C(B,uB,,y) and we get (for + = 0, 1) the same needed con-
clusion that

%] # BinX(\CIO,' < Bir\CIC(Bo\JBl, y).
THEOREM. Suppose X and Y are compact metric spaces, f: XY
18 a continuous mapping of X onto Y, and
Y = You YIU qu coe

18 a decomposition of Y into closed subsets Y; such that the following three
conditions are satisfied:
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1) fIf~Y(X;) is a confluent mapping of f~'(Y,) onto ¥, for i =0,
1,2,..., '
(i) Y;nY; <« Y, for i #j and 3,j =1,2,...,

(iii) K nY, has only a finite number of components for each subcon-
tinuum K of Y.

Then f is confluent.

Proof. Let K < Y be a continuum and let C be a component of
f~'(K). To prove that f(C) = K it is enough to show that, given a point
geK, we have ge¢f(C). Let us take a point pef(C) and assume p +# q.

There exists a point x,eC such that p = f(z,). By (iii), the set

(1) B =(KnYy)uip,q

has a finite number of components. If p and ¢ belong to the same compo-
nent, say A, of B, then, by (1), A <« KnY, and a component C’ of
f~'(4) contains z,. But since A < ¥, and, by (i), the mapping f|f~!(Y,)
is confluent, we have f(C’) = A, whence q¢f(C’), and A < K implies
C' = C, which means that qef(C). Thus we can assume that p and ¢
belong to two different components, say 4, and 4,, of B, respectively.
The set B is a closed subset of the continuum K. We claim that there
exist components 44, 4,,..., 4, of B and there exist points y,, ¥,, ...
veey Y of K\B such that 4, =4,, 4, = 4, and

(2) A4;_;nclC(B,y)) #9 fori=0,1and j=1,2,...,m.

In other words, the components 4, and 4, of B can be joined together
by means of a finite chain of sets composed, alternately, of some other
components of B and of the closures of those connected subsets of K\ B.
Indeed, if it were not so, then denoting by B, the union of all components
of B which can be joined with 4, in such a way, we would have 4, < B,
and 4, < B, = B\B,. Thus B,, B, would be non-empty closed sets in
K which are not joined by any continuum of type clC(B, y) for yc K\ B,
contrary to Lemma 1.

Now, according to (2), let ¢; be points such that g¢;ed; ; and
ggeclC(B,y;) for © =0,1 and j =1,2,...,m. We put ¢y =p and
we are going to prove by induction on j that g,;ef(C) for j = 0,1, ..., m.
We know that ggo<f(C) and let us assume that g,;_,<f(C) for a positive
integer j << m. First, we have to show that ¢,;¢f(C). If ¢q,;_, = ¢,;, we
are done. If ¢,;, # q;;, then observe that ¢,; ,e4;_, and g¢,e4;_,,
where A;_, is a ccmponent of B. Consequently, by (1), we have A4,_,
< KNY,. There exists a point x;,_,eC such that g¢,; , = f(x;_,), and
a component C'' of f~'(4,_,) contains x;_,. But since 4; , < ¥, and
fIf7'(X,) is confluent, we have f(C'') = 4;_;, whence g¢¢f(C"’), and
A; , < K implies ¢"" = ¢, which means that g¢,;ef(C).
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Let u; be a point of C such that ¢,; = f(%;). The set C(B, y;) is the
union of the increasing sequence of the sets C,(B, y;) which are continua
contained in K\ B. Therefore, by (1), each of these continua is contained
in Y\Y,, whence also in the union Y,uXY,u ... Moreover, the sets
Y,, Y,, ... are mutually disjoint outside Y,, according to (ii). It follows
(see [2], p. 173) that none of the continua C,(B, y;), where n(y;) <,
meets two of the sets Y,,Y,, ... We conclude that there exists a positive
integer k; such that C(B, y;) < Y,c],. Thus C; = ¢lC(B, y;) is a continuum
contained in KN ij and C; contains both ¢;; and ¢,;. Since, by (i), the
mapping f|f™’ (ij) is confluent, the same argument as above shows that
goj<f(C); one has only to replace 4;_,, Y., 2;_,, g ;_, and ¢,; by G,
ij, w;, ¢;; and g,;, respectively.

As a result, we obtain ¢, <f(C). If ¢,, # ¢, the continuum A4,, which
is a component of B contains both ¢,,, and ¢, whence, by (1), 4,,< K NY,.
Again, the same argument utilizing the confluency of f|f~!'(Y,) shows
that, in any case, we have gef(C).

Remarks. Examples 4.2 and 5.6 of [3], or their variants, indicate
that without conditions (ii) and (iii) the mapping is not necessarily con-
fluent. As a matter of fact, the mapping in the first of those examples
is locally confluent and the mappings in both of them even are not weakly
confluent (!). Condition (iii), however, assumes a simpler form in the case
of hereditarily unicoherent spaces (2). This can be seen in the following
corollary which generalizes Theorem 5.4 of [3]:

COROLLARY 1. If f is a mapping of a compact metric space onto a here-
ditarily unicoherent compact metric space Y for which there ewists a de-
composition

Y=Y uY,uY,u...

into closed subsets Y; such that Y, has only a finite number of components
and conditions (i) and (ii) are satisfied, then f is confluent.

It has been proved by Read [4] that if f is a locally confluent map-
ping of a continuum onto a hereditarily unicoherent continuum having
no more than two arcwise connected components, then fis weakly confluent.
We are going to show that hereditary unicoherence in Read’s theorem
cannot be replaced by unicoherence. In our example both the domain
and range spaces are arcwise connected, unicoherent, rational continua

(1) We say that a mapping f is locally confluent provided there exist closed
subsets Y; of the range space Y such that the interiors of ¥; cover ¥ and condition
(i) is fulfilled. A mapping is called weakly confluent provided at least one component
of the inverse image of each continuum is mapped onto that continuum.

(3) A space is said to be hereditarily unicoherent provided the common part
of each two of its subcontinua is a continuum (although it can be the empty set or
a degenerate continuum).
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and the mapping is locally confluent without being weakly confluent.
Consequently, there seems to be an off chance to have a union theorem
for confluent mappings in the case of unicoherent spaces. But, first, we
need to deduce another corollary and prove some lemmas.

COROLLARY 2. If f 18 a mapping of a compact metric space onto a com-
pact metric space Y, F < Y 18 a finite set, and ¥ = Y,0Y,u ..., where
Y, are closed in Y, fif~'(X;) are confluent, and Y,nY, < F for i #j
and i,j) =1,2,..., then [ i8 confluent.

LEMMA 2. If X i8 a non-degenerate continuum and peX is a point,
then there exists a comtinuum U(X, p) and its decomposition

U(X,p) =Xud,ud,u...

such that each A; is an arc with end-points p and p; (t+ =1,2,...), and
the following two conditions are satisfied:

(I) {p} == AiﬁX = A‘i nAj fO'r 'i ?Sj a'nd ?:,j = 1, 2, ceey

(II) X = Ls Ay, for each infinite sequence of integers 1 < ky < k, <...

Proof. We denote by H the Hilbert cube which we consider to be
a convex metric space with unique straight-line metric segments and
the metric in H denoted by o. We also think of H as identical with the
subset H x {0} of the product H x [0,1], and assume X to be a subset
of H. Given two points ¢, and ¢, of H x [0,1], we denote by g, the
straight-line (closed) segment having end-points ¢, and ¢, in H x [0, 1].

Let «,, #,, ... be points of X such that the set {z,, z,, ...} is dense
in X. For each ¢ =1, 2, ..., we define an arc B; in H x [0, 1] as follows.
Since X is a continuum, there exist points x;, 2, ..., Tim;, 0f X, such

that z,, = p, the set {w,, z,, ..., 2;} is contained in the set {=;,, zy, ...
cery Ty}, and
(@ 1, 2y)< it for j=1,2,...,m,.

Let ty4y %y ..-s tim, be real numbers such that
CHL) T <t <t < .oo <y, < 17!
and let ¢; = (®y,1t;) for j =0,1,...,m;. We put

m;

B; = U qi,i—194:; -
jm=1

Observe that B,, B,, ... are mutually disjoint ares in H x [0, 1] and
each of them is disjoint with X. Moreover, if geB,, then geg;;_,q; for
some j =1, 2, ..., m;, whence
2(4, 9y) < 0(g4,5-1y 24) <

v S (g @) 0@y Byg) + 0 (@, @) <tbijoi 1T < 317,
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and thus
(g, 2y) < e(q, ay) + 0(gy, Ty) < 47,
We see that the arc B; lies in the (447!)-neighbourhood of X in
H x[0,1]. It follows that

Ls B; <« X

00

and the set ¥ = XuB,uBu ... is compact. On the other hand, if
h < ¢ are positive integers, then , = x; for some j =1,2,...,m; and

e(@ns @y) = e(@y, qy) =ty < i,
so that the set {z,, %, ..., ;} lies in the (¢~!)-neighbourhood of B,. Con-
sequently, since the set {z,,%,,...} is dense in X, we obtain

X < Ls By,
1—00

for each infinite sequence of integers 1 < %k, < k, < ... As a result, con-
dition (II) is fulfilled for 4, replaced by B,,.

In order to satisfy also condition (I) we need to identify some points
of Y. The end-points of the arc B; are ¢;, = (P, ty) and ¢y, (¢ = 1,2, ...),
and we have

b= ‘1_12: Qio-

Let P = {p}U{qioy g2y .---} and let us determine an upper semi-
-continuous decomposition of Y by selecting P to be the only non-degenerate
element of the decomposition. We define U(X, p) to be the resulting
quotient space and let ¢ be the natural projection of Y onto U(X, p).
Clearly, we can assume that ¢ is the identity on X and now both condi-
tions (I) and (IX) are satisfied for A; defined as A; = ¢(B;). The set 4, is
an arc with end-points ¢(g:,) = ¢(p) = p and p§ = ¢(gm,) (i =1,2,...),
and

U(X,p) =¢(Y) =¢p(X)up(B)uep(By) u...=Xud,ud,u ...

LEMMA 3. If a continuum U (X, p) has all the properties listed in
Lemma 2, then U(X, p) is unicoherent.

Proof. Assume U(X,p) = Lu M is a decomposition of U(X, p)
into continua L and M. First, we prove that at least one of these con-
tinua contains X. In fact, if X is disjoint with L or M, then X is contained
in M or L, respectively; so that we can assume, for this part of the proof,
that X meets both L and M. If X is not contained in L, then there exists
a point geX\L and, by (II), we have qe Ls A;, whence there is

+—>00

an infinite sequence of integers 1<k, < k,< ... and points Qe Ay,
(¢# =1,2,...) such that
q = limg;,.
i—00
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Consequently, there exists an integer i, such that ¢,¢L for i, < <.
Since each point of the arc 4; (¢ =1, 2, ...) except the end-point p; cuts
the continuum U (X, p) according to (I), we see that every subcontinuum
of U(X, p) which contains both end-points of A; contains the whole arc A;.
If the continuum L contains p;, it also contains p (because of L N X # @),
and thus 4, < L. Hence, if L contained p,,, it would contain g; which
is not true for i, < ¢, so that p,, ¢L for i, < <. But then p, e M for iy <t
and, by the same reason (because of M NX # OJ), we get A, < M for
1o < 1. It follows from (II) that X < M.

Without loss of generality, we can assume that X < M, and then,
to complete the proof of Lemma 3, three cases are to be distinguished.

Case 1. LNnX « @ and p¢L. Since, by (I), the point p cuts the
continuum U(X, p) between each pair of points selected from X\{p}
and A4;,\{p}, respectively, we conclude that the continuum L is disjoint
with each of thearcs 4;(¢ =1,2,...)) Thus L< X <« M,and LN M =L
is a continuum.

Case 2. LNX # @ and peL. We need to know that L NnX is a con-
tinuum. To show this, let us suppose, on the contrary, that L nX is
not connected, i.e. we have a decomposition LNX = D,uD, of LNX
into two disjoint non-empty closed sets D, and D,. Since peL NX, we
can assume that peD,, and let us select a point deD,. There exist open
sets @, and G, in U (X, p) such that D;< G, for j =1,2 and cl@, Nncl@,
=@. Thus deG, and p¢cl@,. Since L is a continuum, the com-
ponent C of L ncl@, which contains d meets the boundary of the set
L nel@, in L (see [2], p. 172). That boundary, however, is disjoint with
both D, and D,, whence the continuum C meets the set L\ X which is
contained in the union of the arcs A4;. Since p ¢ C, it follows from (I)
that the sets C N A4; and ¢ N X are mutually disjoint and, at least two
of them being non-empty, the decomposition of C into these sets con-
tradicts the fact that C is a continuum (ibidem, p. 173). Consequently,
the set LNX is a continuum. But X < M implies that

(3) LNnM =(LnX)uJ(ILNnMnA,).
=1

Moreover, we have peL N A; and each point of A4; except p; cuts
U(X, p) according to (I). We then see that each non-degenerate set
L NnA4;is an arc having p as an end-point. Because pe M N A,, the same
is true for M N A;, and we conclude that the sets L N M N A, are continua
(¢# =1,2,...). Since the point p belongs to each of them and to LNX
as well, it follows from (3) that L n M is connected.

Case 3. LNnX = @. In this case, by (I), there exists a positive in-
teger k such that L < 4,\{p}. Thus L is an arc or a degenerate set.
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Since X < M and pe M, the set M NnA,, similarly to what was stated
in Case 2, is an are containing p or it is equal to {p}. Consequently, the
common part LN M = Ln M nA4,, if non-degenerate, is also a subarec
of 4,.

LEMMA 4. If X and Y are non-degenerate continua, peX is a point
and f: XY 18 a confluent (locally confluent) mapping of X onto Y, where
q = f(p), then there exist continua U(X,p) and U(Y, q) having all the
properties listed in Lemma 2 and a confluent (locally confluent) mapping

ff+UX,p)>0(Y,q)

of U(X, p) onto U(X, q) such that f*(x) = f(x) for xe X, and f*|U(X, p)\X
18 a homeomorphism of U(X, p)\X onto U(Y, ¢)\Y.

Proof. Let U(X, p) be the continuum described in Lemma 2 and
consider the upper semi-continuous decomposition of U (X, p) into the
sets f~!(y) for y¢Y and the degenerate sets {z} for z¢ U(X, p)\X. Let
U(Y, q) be the resulting quotient space and let us denote by f* the nat-
ural projection. We can then treat the space Y as embedded in U(Y, q)
in a way such that f*(z) = f(«) for < X. Clearly, f* is a homeomorphism
outside X, and U(Y, q) is decomposed into ¥ and the arcs f*(4;), which
have all the properties indicated in Lemma 2 as applied to ¥ and ¢ instead
of X and p, respectively. Moreover, if f is confluent, then so is f*|X = f
as well as each f*{4, (¢ =1,2,...), and it follows from Corollary 2 that
f* is confluent. If f is locally confluent, we conclude from Corollary 2
that the restrictions of f* to the inverses of some closed neighbourhoods
of points in U(Y, q) are confluent, which means that f* is also locally
confluent.

Example. We construct a locally confluent mapping ¢g: X—>Y of
a continuum X onto a continuum Y such that g is not weakly confluent
and both X and Y are arcwise connected unicoherent rational curves.
Our construction is based upon Example 4.2 of [3]. First, we define a subset
X, of the Euclidean plane to be the set

X, = {(=, 2): —1<m<3}u{(sinyj2 ,y): 2<y<3}u

v{(z,3): 0<z<2}u{(2,y): -1<y<3}u

u{(w,sin w"z): 2 < w<3}u{(3,y): 0<y<2},

and let p = (2,2). Then X, is an arcwise connected (non-unicoherent)
rational curve with pe¢X,. Let us take the upper semi-continuous decom-
position of X, whose only non-degenerate elements are the two-point
sets {(t, 2), (2,¢)} for —1 <¢< 2. Denote by Y, the resulting quotient
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space and let f: X,—~Y, be the natural projection of X, onto Y,. Put
q = f(p). It is not difficult to see that f is locally confluent without being
weakly confluent. By Lemma 4, we get an extension g = f* of f which
maps X = U(X,, p) onto Y = U(X,, q). Moreover, ¢ is locally confluent
and ¢(X\X,) = Y\Y,, whence g~!(B) = f~'(B) for B < ¥,. Thus ¢ is
not weakly confluent either. Now, since U(X,, p) and U(YX,, q) satisfy
all conditions from Lemma 2, we conclude, by Lemma 3, that these con-
tinua are unicoherent. It is rather apparent that both of them are also
arcwise connected and rational.

REFERENCES

[1] J.J. Charatonik, Confluent mappings and unicoherence of continua, Fundamenta
Mathematicae 56 (1964), p. 213-220.

(2] K. Kuratowski, Topology, vol. II, New York-London- Warszawa 1968.

{3] A. Lelek and D. R. Read, Compositions of confluent mappings and some other
classes of functions, Colloquinm Mathematicum 29 (1974), p. 101-112.

[4] D. R. Read, Oonfluent and related mappings, ibidem 29, p. 233 -239.

UNIVERSITY OF HOUSTON

Regu par la Rédaction le 10. 5. 1973

§ — Colloquium Mathematicum XXXI.1



