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On generalized Pascu class of functions

by V. ANBUCHELVI and S. RADHA (Madras)

Abstract. In this paper two new subclasses M (a; ) and R,(x; h) of the class of univalent
functions are defined and results connected with the transform under a certain integral operator,
inclusion relation and convolution of functions belonging to these classes are established.

Let E={zeC: |z} < 1} and H(E) be the class of all functions f holo-
morphic in E. Let A be the subclass of H(E) of functions f with Montel’s
normalizations f(0) = 0 = f'(0)— 1. Further let § = { fe A: f is univalent in E}
and K and S* denote the well-known subclasses of functions of § which are
convex and starlike respectively. Let f(z) = Y 22 a,2" and g(z) = Y 7= 0b,2" be
any two functions in H(E). Then the Hadamard product or the convolution of
f and g is given by (f*g)(z) = ) P-0a,b,z".

Let g, Ge H(E). Then g is said to be subordinate to G (written g 3 G) if
g(0) = G(0) and there exists a Schwarz function w(z) in E such that
g(z) = G(w(z)). In particular, if G is univalent then g(E) < G(E).

Initially we state three theorems without proof which we will be using in
the sequel:

THEOREM A [2]. Let f, y € C, he H(E) be convex univalent in E with h(0) = 1
and Re(ph(z)+y) >0, zeE. If p(z) = 1 +p,z+... is analytic in E, then
zp'(z)
Pp(z)+y

The generalized version of Theorem A established by K. S. Padmanabhan
and R. Parvatham in [3] is as follows.

p(z)+ 3 h(z) = p(z) 3h(2).

THEOREM B [3]. Let f, ye C, he H(E) be convex univalent in E with h(0) = 1
and Re(Bh(z)+7) > 0, ze E, and let ge H(E) with q(0) = 1 and q(z) 3 h(z) in E. If
p(z) =14p,z+ ... is analytic in E, then

zp'(z)
Ba(z)+y

p(z)+ 3h(z) = p(z) 3h(2).
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THEOREM C [1]. Let ® and g be analytic in E with ®(0) = g(0) =0 and
@'(0)g'(0) # 0. Suppose for each « (ja| = 1) and o (lo| = 1) we have

(L1) [é*(llta;z)g:l(z) £0 onO<lzg<r<l.

Then for each F in H(E), the image of |z| < r under ®+Fg/®xg is a subset of the
convex hull of F(E).

Remark 1. If #cK and geS*, then it was shown in [7] that (1.1) is
satisfied for all z in E.

Unless stated otherwise, throughout this paper g(z) stands for a function
holomorphic in E with g(0) = 0 = g'(0)—1 and h(z) stands for a holomorphic
convex univalent function in E with #(0) =1 and Reh(z) >0 in E.

First let us define the class M (a; h).

DEFINITION 1. Let M,(a, h) denote the class of all functions fe A with
(g* ) (2)(g*f)(z) # 0 in E—{0} satisfying"
az(z(g* fY () @)+ (1 —0)z(g* ) (2)
az(g* f) (2)+(1 —o)(g* f)(2)

3 h(z)

for zeE and « > 0.

Remark 2. For « =0, the class M («; h) coincides with the class S,(h)
studied in [8]. For the choice g(z) = k,(z) = z/(1—z2)" (a real), M, (a; h) is the
same as the class M (a, h) in [4] which, in turn, is a generalization of the class
of Pascu and Poderu [6].

DEfFINITION 2. Let R, (x; h) denote the class of all functions feA with
(g*f)(2)/z # 0 in E such that

az(z(g* f) (2)) (2)+ (1 —e)z(g* /) (2)
0z(g* ) (2)+(1 —a)(g % P)(2)

for deM (o; h) and « > 0.

-3 h(2)

Remark 3. For a =0, the class R (a; h) coincides with the class C,(h)
studied in [8]. For the choice g(z) = k,(2) = z/(1—2) (a real), R,(a; h) is the
same as the class R,(«; h) studied in [4] which, in turn, is a generalization of the
class studied by Pascu [5].

THEOREM 1. We have the following inclusion relation:
M,(x; h) =« M,(0; B) = S,(h) for 0<a< 1.
Proof Let f(z)e M, (a; h) and p(z) = z(g* f) (2)/(g* f)(2).
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Then
az(z(g* f) (@) (@) +(1—2)z(g* /) (2)
= az(g* f)(2)p'(2) +azp(z)(g* f) (2) + (1 — )+ (1 — ) p(2) (g * /)(2)
= [ozp' (2) + p(2) (2p(2) + (1 — )] (g * £)(2);
az(g* Y (2)+(1—a)(g*f)(z) = (ap(2) + (1 =) (g * )(2).
Hence

ez(z(g £) @) (2)+(1—2)z(g* £) (2)
xz(g» Y (@) +(I—o)g* /)2
_azp' () +p(@)(apE) +(1-w) _  zp'(2)

P@+1-a p@+1a=D PO

Since feM(x; h),
az(z(g= Y (2)) (2)+(1 —a)z(g* f) (2)
az(g* f) (2)+(1—a)(g* f)(2)

Thus for 0 < a« < 1 an application of Theorem A gives p(z) 3 h(z) in E,
which implies that fe M (0; h) = §,(h).

3 h(z).

Now, we prove that the class M,(«; h) is closed under the transform by an
integral operator.

THEOREM 2. Let feM (o, h). Then, for 0 <a <1,

F(z) =

azm_l_([t”‘“zf(t)dteMg(a; h).

Proof. Differentiating F(z) with respect to z and simplifying we get
azF'(2)+ (1 —a)F(z) = f(2).
This on convolution with g(z) gives

az(g* FY (z)+(1—a)(g*F)() = (g f)(2)

(#0 in E-—-{0} by Definition 1), where we wused the fact that
g*(zF'(z)) = z(g*F)'(z). Taking logarithmic derivative with respect to z and
multiplying by z we get

az(z(g*F) (2)) (2) + (1 ~a)z(g* F)'(2) _ z(g* ) (2)
az(g*F) (z)+(1—a)(g*F)(2) (g* N

The member on the right side is subordinate to h(z) since
feM(a; h) = M,(0; h) = S (h) for 0 < a < 1 by the previous theorem. Hence,
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az(zlg+F @) @+0 =020 FY@) 400 0k for 0<a <1,
az(g+F) (2)+(1—2)(g*F)(2)

Also F(z) = y,(z)* f (z) where

o 1/ .
W =2+ L e Th

Since (g* f)(z) # 0 in E—{0} and & > 0 we have (g% F)(z) = 7,(z)*(g* f)(z) # 0
and hence (g*F)(z) #0 in E—{0}. Thus FeM_(«; h).

THEOREM 3. Let ®€K. Then for every feM,(o; h), & feM,(x; h).
Proof. Let

Flo) < 220N @) (@) + (1 ~0z(g* ) ()
T @Y @D+(1-a)g )

If feM,(«; h) then by Theorem 1, F(z) -3 h(z) in E. Now consider

az(z(g* D f)Y) (2)+(1 — ) z(g* D+ f) (2)
az(g*P* f) (2)+ (1 —a)(g* P f)(2)

_az(®ra(gs 1)) () +(1—a)(Bxz(gs £))(2)
2(@xz(g+ 1)@+ —2)(@*gx ))(z)

_ (@x(az(zg 1Y) + (=) 2(g )))(2)
(@*(az(g* f) +(1—a)(g* N))(2)

( cp*liaz(z(g*f)')'(z)*'(l —)z(g+ f ﬂﬂ (ez(g» f) +(1 —a)(g*fi))(z)

az(g*fY () +(1—a)(g* f)(2)
(@+(ezg 1Y +(1—a)(g*N))(2)

_(PxFG)(2)
T (P%G)(2)

where G(z) = az(g* f)(2)+ (1 —a)(g*f)(z). Now

2G'(2) _ wz(zlg» fY (2)) () +(1 —)z(g* ) (2)
G(2) 0z(g* f) (2) +(1 —e)(g* f)(2)

since fe M (a; h). Or Re[zG'(z)/G(z)] > 0, which implies that G is starlike.
Further, F(z) 3 h(z) and & is convex univalent. Hence from Remark 1 under
Theorem C we see that the image of E under &*FG/®+G lies in the convex
hull of F(E) < h(E), a convex set. Thus,

3 h(z)
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az(z(g*d5*f)'(z))'+(1—a)z(g*di*f)'(z) _ (D+FG)(2) k()
az(g* P+ fY(2) + (1 —a)(gxD* f)(2) (DxG)(2) ’

which implies that @« fe M (o; h).

THEOREM 4. For every convex univalent function ®eA, My(x; h)
S Mg (2t; h).

Proof. Let feM,(x; h). Then by the previous theorem &x*fe M («; h).
That is,

az(z(g* @+ 1) (2)) (2) +(1 —)z(g*P+ ) (2)
az(g*@* f) (z)+(1—a)(g* P+ f)(2)
Or equivalently fe Mg, (a; h).

-3 h(z).

Next we prove an inclusion relation and also the fact that the class
R,(a; h) is closed under a certain integral operator.

THEOREM 5. For 0 < a < 1, Ry(a; h) = R,(0; h) = C,(h).
Proof Let feR,(a; h). Then there exists a deM (x; h) such that
az(z(g* fY (2)) (2) + (1 —)z(g* f) (2)

(g D+ - D@ DG
Setting
_z(g+fY(2) _2(g*9)(2)
p(z) = G D)) and q(2) Tl
we have

az(z(g* ) (2)) (2) +(1—@)z(g= f) (2)
az(g*d) (z)+ (1 —a)(g=P)(2)

azp'(z)+ p(z) (Mz—)+(l —a))

@)
g ®@
G TUTY
(2
= p(z)+
209
A (1~
o T
) +—PE 3,

q(2)+(1/e—1)

since fe R, (a; h). Here q(z) 3 h(z) by Theorem 1. Since 0 S« <1, an ap-
plication of Theorem B gives p(z) 3 h(z), thereby establishing the theorem.
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THEOREM 6.

|
F(z) = T gt”" 2f(t)dte R (o; h)

whenever feR (a; h) for 0 <a < 1.
Proof On differentiating F with respect to. z we have
wzF'(2)+(1—a)F(2) =1 (2).
This on convolution with g(z) gives
wz(g*FY (z)+ (1 - o) (g*F)(z) = (g* f)(z),

where we used the fact that gx(zF'(z)) = z(g*F)(z). Again differentiating with
respect to z and multiplying by z we get

az(z(g*F) (2)) (2)+ (1 — ) z(g % F)' (2) = z(g* f) (2).
Since fe R, («; h) there exists a e M, (a; h) such that
az(z(g* f) (@) (@) + (1 —o)z(g* f) (2)
az(g* ) (2)+(1-a)(g*)(z)
By Theorem 2, & defined by

3h(z) in E.

®(z) = j't”" 2p(t)dte M (a; h)

1/.: 1

for 0 < a < 1 whenever ¢ € M (e; h). Differentiating $(z) with respect to z, and
convoluting the result with g(z) we have

az(ge B @) +(1—a)(g*P)o) = (g*)D # 0  in E—{0}.

Thus
az(z(g*F) (2)) (2)+ (1 —2)z(g * F) (2) _z(g*f) (2
az(g* DY (z)+ (1 —a)(g* P)(2) g*o)2)
Since feR,(«; h) and R, (x; h) = R (0; h) (by Theorem 5) we have
z(g= f) (2)
—_(g*¢)(z) 3h(z) for zeE, 0<<a<l.
Hence

az(z(g*F) (z)) (2) + (1 — &) z(g + FY (2)
z(g* D) (z)+ (1 —a)(g* P)(2)

3h(z) in E

for0<a< 1.
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In the same way as in Theorem 2 we can show that (g% F)(z) # 0 and
(g*F)'(z) # 0 in E—{0} from the fact that (g+ f)(z) # 0 and (g*f)'(z) # 0 in
E—{0} for > 0. Thus we get FeR (a; h).

THEOREM 7. Let f € R (a; h) with respect to a function ¥ € M (a; h). Then for
every convex univalent function ®eA, OxfeR (a;h) with respect to
PV eM,i(a; h).

Proof From Theorem 3, it follows that ®+¥eM_(a;h) whenever
YeM,(«; h). Let

Flo) = 2220 V@) (@) +(1—z(gx /) (2
Caz(gx¥) () +(1—-0)g*xP)2)

Since f € R (a; h) with respect to ¥ e M (a; h) we have F(z) 3 h(z) in E. Now,

az(z(g*P* [ (2)) (2)+ (1 — o) z(g* D+ 1) (2)
az(g* P+ V)Y (2)+ (1 —a)(g* P+ ¥)(z)

_ az(D*z(g* f) (2)) (2) +(1 —a)(P*z(g* f) (2))(2)
a(P*z(g*P) (2))(2)+(1 —a)(P*(g* P))(2)

az(z(g* Y (2)) @)+ (1 —a)z(g* f) (z) ,
((D*l: az(g*P) (2) + (1 —a)(g* P)(2) ](GZ(Q* ) +(1—a)(g* 'P')))(z)

D x(az(g* P)(2) +(1—0) (g P)(2))

_(®xFG)(z)
T (®xG)2)’

where G(z) = az(g* V)Y (z)+ (1 —a)(g* ¥)(z). Now

2G'(2) _ az(z(g* ¥Y (2)) (2) +(1 —0)z(g% P (2)
G(2) az(g* ¥)(z)+(1—a)(g* ¥)(2)
since ¥ € M (a; h). From this we have Re{zG'(z)/G(z)] > 0, which implies that

G is starlike. Also F(z) 3 h(2) and A is a convex univalent function. Thus from
Remark 1 we get (@*FG)(2)/(®@*G)(z) 3 h(z). Thus ®=* fe R (a; h).

=3 h(2)

THEOREM 8. R, (x; h) S Rg.,(; h) for every convex univalent function P e A.

The proof of Theorem 8 runs along the same lines as that of Theorem
4 and hence is omitted.
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