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On the absolute differentiation of geometric object fields

by IVAN KoOLAR (Brno)

The main purpose of the present paper is to develop an invariant
algorithm (based on the works of E. Cartan) for higher order absolute
differentiation of arbitrary geometric object fields.

The absolute (or covariant) differentiation was first studied for
some special geometric object fields (mostly tensor fields). When Ehres-
mann introduced the general definition of a connection on a principal
fibre bundle and when the general concept of a geometric object field
was clarified within the framework of the theory of fibre bundles (a com-
plete comparison with the classical definition of geometric objects in
the sense of Wundheiler was given by Kucharzewski and Kueczma, [13],
sec also [12]), some authors treated the general problem of absolute
differentiation. According to our opinion, there are three main points
of view to this question: the axiomatic approach, [1], [15], a definition
by Crittenden, [2], and, last but not least, a paper by Ehresmann, [5].
In this paper, Ehresmann outlines only the main ideas, but he clarifies
the opecrations of higher order. A detailed development of his ideas (as
given in [7]) shows that the higher order (i.e. iterated) absolute differen-
tiation is closely related to the prolongations of a connection. This approach
is essentially based on the concept of a semi-holonomic jet of higher
order introduced in [3].

Since the present paper deals with the absolute differentiation of
higher order, it is based on [5] and [7]. To show the connections with
other points of view, we deduce that the definitions by Ehresmann (in
the case of first order) and Crittenden are equivalent (the equivalence
of the axiomatic approach with the definition by Crittenden was proved
by Szybiak [15]). In what follows, we use essentially our results of [8]
and [9]. In Section 1 it is shown that the invariant formula for the absolute
differential of first order can be obtained by a simple specialization of
Proposition 1 of [9]. In Section 2 we deduce a “recurrence formula”,
which is applied to the proof of our main result in the last section.

Our considerations are performed in the category C®. The standard
notation of the theory of jets is used throughout the paper, cf. [7].
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I. On the ahsolute differential of the first order. L2t P(B,G; xn) be
a principal fibre bundle and let B(B, F, G, P) bz a fibre bundle associated
with P. The elements of E arc the cquivalence classes {(u, )}, ueP, seF,
with respect to the equivalence relation (u,s) ~ (ug, g '(s)).” Hence
every ueP,, xeB, determines a diffeomorphism (denoted by the same
symbol) u: F — E,, 8 — {(u, 8)}. Thus we have a mapping of PR E
(= the fibre product over B of P and E) into F, (u, 2) — u~'(2), cf. [9].
The concept of a geometriciobject field is used in two equivalent forms,
which we call the direct or the indirect form, respectively, [6]. A geometric
object field in its direct form is a cross section ¢: B — E, while the in-
direct form of ¢ is the mapping

(1) | w > u",(o(n(u)))
of P into F.

Let @ = PP~! be the groupoid associated with P, see e.g. [14].
Every element of @ is of the form wu™', 4, %eP, and it can be regarded
as a diffcomorphism E, - I;, 2 = a(u), ¥ = n(%), which is the com-
position of u~': E, > F and @: F — HB;, wu~'(2) = u(u~'(2)),2¢E,. An
element of connection (of first order) on @ at zeB is a 1-jet at  of a local
mapping A(y) of B into @ of the form A(y) = o(y)[e(x)]™', where o(¥)
is a local cross scction of P. Denote by Q'(®) the fibre bundle over B
of all elements of connection on @; a connection (of first order) on @
is a cross section C: B — QD).

If.0: B — E is a cross section, then 27 (y)(o(y)) is a local mapping
of B into E,. According to Ehresmann [5], the value of the absolute
differential Vo of ¢ at z with respect to C is defined by

(2) (Vo) (@) = jz[A7 (@) (o (9))] e I2(B, E,).
Set Z,(E) = U Ji(B, E,), which is an associated fibre bundle of the
B

T€

symbol (B, T} (F), L, XG@, H'(B) £ P). (If ueP,weH.(B) and Y is an ele-
ment of F,(E) over x, then YveT)(E,) and ' (¥v)eT),(F).) Hence Vo
is a cross section of #}(E). '

Considering a connection I' on P and a geometric object field in in-
direct form X:P — F, Crittecnden [2] dcfines the absolute differential
VX of X with respeet to I' as follows. For every weP, VX is a lincar map
of T,(B) into T, (F) determined by

3 . VEX)=4Z(X,), XcT.B),»=n(u),

where X, denotes the horizontal lift of X at w. But this linear map is
identified with a 1-jet of B into I’ with source x and target X(u). If we
further choose an element ve H(B), then the composition of VX and »
is a 1-jet of R™ into F with source 0, n = dim B, i.e. an clement of T, (F).
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From this point of view, X can be interpreted as a mapping of H'(B) = P
into T, (F).

We have remarked in [7] that a connection on P can be considered
as a G-invariant cross section of P into J!P. Every connection C on &
determines uniquely a connection I" on P as follows. If C(z) = jii(y)
and ueP,, then A(y) is uniquely expressed as A(y) = o(y)»~' and we
put I'(x) = jie(y); this connection I’ is said to be the representative
of C on P, [7]. Now, the comparison of the definitions by Ehresmann and
Crittenden is given by

LEMMA 1. If the connection I' on P represents the connection C on
PP~ and X: P — F is the indirect form of o: B — B, then the absolute
differential VX of X with respect to I', according to Crittenden, is the indirect
Sorm of the absolute differential Vo of o with respect to C, according to Ehres-
mann.

Proof. Let ue P, and X e T,(B), X = j3y(t), where y is a curve on B.
It I'(w) = jre(y), then X, — jio(y(t)) and

(4) dZ(X,) = jile " (r®) (o (»1))]
by (1). On the other hand, C(z) = ji[e(¥)u~'] and
(5) w (Vo) = jzle™ (%) (e (®))].

Comparing (4) and (5), we obtain Lemma 1.

We are now going to deduce the invariant formula for Ve. In [8]
we have defined the first prolongation W!(P) of P as the space of all
1-jets with source (0, ¢) of the local isomorphisms of R™ X ¢ into P. (An
analogous subject is also treated by Szybiak [16].) We have shown that
W1(P) cquals to the fibre product H(B) ® J'P and it has a natural struc-
ture of a principal fibre bundle over B with structure group G,, which
is the semidireet product LL < Th(G) of the groups L, and T.(G) with
respect to the action § — Sy of L. on T, (G),ye L), Se T(G). We have
also introduced the canonical (R"@g)-valued form 6; of W?*(P). There is
a natural projection ux: W1(P) — H!(B) and the diagram

R'@g<«— 2 T(W'(P))

(6) Jm ln.

R" " _ T(HYB)

is commutative, provided ¢, means the classical canonical form of H!(B).

Consider & connection I": P — J!'P.Set R(I") = HY(B) m I'(P)< W(P)
and denote by g the restriction of u to R([I"), so that the projections
u: R(I') - H(B) and f: R(I') — P determine an identification v of R(I")

5 — Annales Polonici Mathematicl XXVII
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and HYB)®P, v(U) = (u(U), ﬂU). There is a natural injection g jig
of @ into T:(G@), where g: R* —@ is the constant mapping z > g; in
this sense we may write G = T»(@). Then L}, x@ is a subgroup of G, = L, x
X TL(@).

LEMMA 2. The space R(I') is a reduction of the principal fibre bundle
WYP) to L) x@G < G.. Conversely, every reduction of WY(P) to L, x@
determines a connection on P.

Proof. An equivalent assertion for connections on the associated
groupoid was deduced by Que [14].

ProposITION 1. Let 8, be the restriction of the canonical form of W'(P)
to R(I'), let w be the fundamental form of connection I' and let ¢, be the
canonical form of H'(B). Then the diagram

g «~—=—— T(P).
Dro Be
(7) R"®g h T(R(I))

I -

R " _T(HY(B)
18 commutative.

Proof. According to [8], every UeW(P),SU = u, determines
a linear isomorphism U: R"®g — T,(P) such that the restriction of U
to {0} @g is the standard identification of g and T,(P,). By definition,
if XeTy(W'(P)), then 0,(X) = U~'(X), where X =g, XT,(P). But
UeR(I') implies that U transforms R @®{0} into I'(x) so that pr,0,(X),
XeTy(R(T)), is the projection of U~!(X) into g in the direction of
U-'(I'(w)). On the other hand, o(X) is constructed by projecting X
into T,(P,) in the direction of I'(x) and applying the standard identifi-
cation of T, (P,) and g. Hence the top quadrangle commutes. The commu-
tativity of the bottom quadrangle follows immediately from (6), Q.E.D.

Consider a cross section ¢: B — K. Its first prolongation j'c is a cross
section B — J'E. Since J'E is an associated bundle of -the symbol
(B, T, (I, G}, W' (P)), [9], the indirect form of j'¢ is a mapping X:
WYP) - T, (F). On the other hand, connection I" represents a connec-
tion C on PP~! and the absolute differential Vo of ¢ with respect to C
is a cross section of % (E), so that its indirect form is a mapping of H!(B) x P
into TL(F).

ProrosItioN 2. For every UeR(I') it holds

2 (D) =V 2)(x(U)).
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Proof. Let U be 1-jet of a local isomorphism of R" xG into P de-
termined by a pair (¢, ), where ¢ is a local diffeomorphism of R" into B
and g is a local cross section of P, ¢(0) = z, o(x) = w. Then

Z(U) =gl Hew)ole@))],

see [9]. On the other hand, 7(U) = (jyg, ) and C(z) = jy[e(y)u""'], so
that

(F2)(r(U) = ' (P E)(Gag)] = v s [ue™ (p)) e (e (®))] = Z1(T),

Q.E.D.
Consider some local coordinates ¥ on F. Let @ be a basis of g* an let

(8) dy®* +ni(y"a* =0, p,q,...=1,...,dimF; .
a,By,... =1,..., dim@,

be the equations of the fundamental distribution on G XF. In [9] we
have deduced the following assertion. Let a” be the coordinate functions
of a geometric object field o: B — F; then the coordinate functions
a®, a? of jlc on W?!(P) satisfy a® = f*a” and

(9) da® +nP(a?) 6* = a?0', i,j,...=1,...,n = dimB,

where 6%, 0° are the components of the canonical form of W(P).

PRrOPOSITION 3. Let a” be the coordinate functions of a geometric object
field o: B — E, let w be the fundamental form of the connection I, let @,
be the canonical form of H'(B) and let p,: H*(B)P — HY(B), p,: H(B) ¥
mP — P be the product projections. Put o = p; o, ¢, = p; ¢, and denofe
by w* or ¢* the components of w or ¢,, respectively. Then the coordinate func-
tions a®, a? of Vo on HY(B)®P satisfy a* = p,a® and

(10) da® +n?(aT) w0 = aly.

Proof. This is a direct consequence of (9) and of Propositions 1
and 2.

Remark 1. Equations (10) represent the invariant form of the
corresponding local coordinate expressions deduced by Szybiak [15].
Indeed, consider a coordinate neighbourhood D = B and a local coordinate
system & on D with coordinates &. Then £ determines a cross section
&: D - H'(B) and it holds £*¢' — d&. Further, if o: D — P is a cross
section, then we have ¢*w® = I'f(£)d&. (Clearly, w® or ¢' are the com-
ponents of w or ¢, respectively.) The pair (&, ¢) is a cross section D —
— HY(B)®P. Set a* = (&, n)*a?, a¥ = (&, )" a?, then (10) implies

(11) 4P+ P (@) T7AE = aPdE,
which is formula (15) of [15].
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II. Recurrence formula. Assume that the direet product H x@ of
two Lie groups H and G acts on the left on a manifold 4 ; we shall write

(12) (hy 9)(a) = g(a)h_l, acA,hel, geG.

Let Q(B, H) be a principal fibre bundle, let ¥ = F(B, A, H,Q) and
let g: F — B be the projection of this associated fibre bundle. According
to (12), we shall write h~! v instead of the usual notation vh, veQ, heH.
We -introduce a left action of @ on F by g({(v, a)}) = {(v, g(a))}; this
definition is correct since g({(hv, (a)h")]) = {(hv, g(a) )} = {(v, g(a))}.
One sees also easily that this action of @ on F is fibre-preserving.

Consider the associated fibre bundle E(B, F, G, P) = (B, (B, 4, H, ),
G, P) with projection p: E — B. We define another projection ¢q: £ —~ B
by q({(u, 8)}} = q(s), seF. Since the action of G on F is fibre-preserving,
this definition is correct. Hence every E, = p~'(x) is a fibered manifold
(E;, ¢z, B), where g, = q|E,. Define

By ={zclB;p(2) = q(2)},
so that F, is an associated bundle of the symbol (B, A, H x@, Q®P).
Every (v, #)eQ, X P, determines a mapping of E, onto 4, which will
be denoted by z — u~'(2)v, ze E,,. According to [9], JLE, is an associated
bundle (B, T,(4), (H x@),,, W (Qw P)). Introduce

SE =\JJLE, or %'E =JJE,,

zeB zeB
which is an associated bundle of the symbol (B, T,(A), H, x&, W (Q)x P)
or (B, J'F, @, P) respectively.

Consider a cross section ¢: B — E, and a connection ¢ on PP,
Since E, = F and E is a fibre bundle associated with P, we can construct
the absolute differential Ve of o with respect to C, which is a cross section
of &3 E. Further, W (Q® P) = H'(B)®wJ'Q®J'P and the representative
I': P—J'P of connection C determines a reduction R(I"') = H(B)w&
®J'QmEI'(P) of W(QxP) to the group H, xG c (H x@).. Analogously
to Scction 1, there is an identification z: R(I') - W(Q)= P. Let p,:
WHQ)m P — W (Q), pe: WH(Q)XP —P be the product projections.

LeMMA 3. Let O, be the restriction of the canonical form of W(Qx P)
to R(I'), let w be the fundamental form of connection I' and let ¢, be the can-
onical form of WY(Q). Then the diagram

g T(P)
ors (27)s
(13) R*®HD g<—~—’z1 """"" T(R(I)
' (pry, pry) 1 (P17

R'®h) ~——— T(W(Q)
18 commutative.
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Proof is a simple replica of the proof of Proposition 1.

The indirect form of jlo is a mapping Z,: WY(Q®P) — T,(4), while
the indirect form of V¢ is a mapping FX: WY(Q)®BP — T\ (A4).

LEMMA 4. For every UeR(I') it holds

Z(U) = (V.2)(<()).

Proof. Let U be the 1-jet of a local isomorphism of R" xH xX@
into Qx P determined by a triple (¢, v, p), where ¢ is a local diffeomor-
phism of R" into B and y or ¢ is a local cross section of @ or P respectively,
¢(0) =2, o(@) = u. Then Zy(U) = j;[o™ lp(y))(olp(¥))v(p(¥)]. On the
other hand, z(U) = (V, u), where V is the 1-jet of the local isomorphism
of R"xH into ¢ determined by the pair (¢, y). Since

C(z) = j.le(y)u"],

it is
(Vo) () = jslwe™ (9) (s(¥)]
and '
V)V, u) = u ' [(Fo)(@)]V = ji[e e @) ole@®)v(e®)] = Z.(1),
Q.E.D.

Let 4 be some local coordinates on A4, let @* be a basis of h* and let
bye =1,...,dim 4 |
(14) @)+l =0, 0 T

X = 1, seey dlm.H, .

be the equations of the fundamental distribution on (H xG) x A. Accord-
ing to [9], if @ are the coordinate functions on QWP of a geometric
object field ¢: B — K, then the coordinate functions of j'¢ on W (Q B P)
satisfy o’ = g*a® and

(15) da® +77,(a%) 0° + 1. (a") 6% = al 0,

where 0%, 6%, 6° are the components of the canonical form of W!(Qmw P).

LEMMA 5. Let o be the fundamental form of I" and let ¢, be the canonical
form of W(Q). Put w = piw,p, =pie, and denote by w® or ¢', p* the
components of w or ¢, respectively. Then the coordinate functions a’, a® of
Vo on WYQ)®RP satisfy a® = p;a® and

(16) da® +12(a%) 0" + 7l (a°)g" = alg'
Proof. This is a direct consequence of (15) and of Lemma,s 3 and 4.
III. Absolute differentials of higher order. We introduce
FUE) = U J*B, B,),

which is an associated bundle of the symbol (B, J1(B, F), @, P). Since
Fi(EB) c FY(E) and F1(E) is associated with P, we can construct the
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absolute differential of the cross section Ve: B —Z1(FE) with respect
to C, which will be called the absolute differential of second order of o
with respect to C and will be denoted by V20 = V' (Vo). Roughly speaking,
the absolute differential of order r of o with respect to C is defined by
induction V"o = V(F"~'0¢). Using the results of [5] and [7], we can des-
cribe this recurrence procedure in more details as follows. Set
Fi(E) =:L€.gj;:(BaEx) or F'(E) =2L33J'(B,Ez),

which is an associated fibre bundle of the symbol (B, Th(F), L}, x@,
H' (B)y®P) or (B,J'(B,F),G,P), respectively. (We recall that
J'(B, E,) denotes the space of all semiholonomic r-jets of B into E,,
gsee [3].) Assume by induction, that we have constructed the absolute
differential F"~'¢ as a cross section of #; '(H). Since F3 1(E) « F~1(K)
and £ (E) is associated with P, we can construct the absolute differen-
tial V(V"~'0) of V""'¢ with respect to C. According to [5] and ([7],
V(F""'e¢) = V"¢ is a cross section of Z5(E).

The local coordinates y* on F are prolonged to some local coordinates
Y'Yy ooy YD 4 O Tt (F), [4]. The analogous local coordinates on 77! (F)
will be denoted by #%,. «+3 Ji..4,_,» The coordinate functions of Vo:
B > %;(E) can be treated by a recurrent algorithm whose first step
is described in Proposition 3. Assume by induction that we have applied
this algorithm (r —1)-times and that we have deduced the equations
of the fundamental distribution on (L}™' x@) xT% '(F) in the form

ay? +nf (gHho* =0,
(17) dg-?‘l’q)?(y’?/j;w,a’j) =0,

@GP iy TR i (s ey Tty O OFy oy of .j_)) =0,
where ©® is a basis of g* and @f, ..., ®f ; | is the natural basis of [
Let u: H'(B)®m P —- H Y (B)® P be the natura,l (jet) projection and let p,
and p, be the product projections of H'(B)® P.

ProrosiTioN 4. Let a” ...,a} ;. | be the coordinate functions on
HYB)gP of V'la, let » be the connectwn form of I' and let ¢, be the
canonical form of H™(B). Put o = = py @, 9, = P, @, and denote by w°® or
@y Py« “y Piy.. 4p_, the components of w or g, respectively. Then the coor-
dinate functfions a", ooy @f 5, of Vo on H'(B)BP satisfy a® = u*a®, ...
ey O 4 =prap ;. | and

da? + 9% (a9 ® = af¢,
(18) da} 4 D7 (%, af, 0, ‘Pf) = aiz;?’j’

P P I % AP i
dail...ir_l +¢i1...ir_1(aq’ R a’qucotjf_l’ wc’ ?j’ AR q’jl---jr_l) - ail---ir—lj¢ ¢
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Proof. If one considers the natural action of the direct product
L' x@ on T,7'(F), then #;"(B) = (B, T, '(F), L, xG, H(B)® P)
satisfies the assumptions of Section 2 provided one substitutes

A ,H, @ , E , E )
T \(F), L7, HN(B), 37 /(B), F77Y(B)]

Further, ' (F"(E)) = UJ‘ (J'E,) and &L(FNE) = UJ‘ J\E,)

(B T3 (T (F), (Lf-l),,xa W (H''(B))®P). Let & —nzw and 0,
= m} 6,, where 8, is the canonical for of W'(H"~(B)) and =, 7y are the
product projections of W'(H'~'(B))@P. Let & or 0, 6;,..., 6} . g1 be.
the components of @ or 6,, respectively. By Lemma 5, if &%, ..., a,
bf, ..., b%_; are the coordinate functions of V(V"~'¢) on W' (H" 1(B)
then it holds

‘rl’

da? + 2 (a9a* = b? oi,
(19) da? + o7 (a?, a7, &% 0%) = b

7D D 5a ~d ~a fi ! — pp i
dail...if_l +¢‘i1...ir_1(a' y e aj].ufr..l’ w 7 Bj’ ""’ 011--».1'_1) - bil...ir_lje .

According to [5] and [7], the values of V"¢ lie in #4(B) = U JLE,
ZEB
c Fo(#7"'(E)). This is characterized by @’ =b?,..., a7

2)...%, bc K
Further we have H'(B) « W'(H""'(B)) a,nd the restrlctllonrof thelcarml)-
nical form of W'(H"~'(B)) to T(H"(B)) is the canonical form of H'(B).
Thus, restricting all quantities of (19) to H"(B) & P, we obtain (18), Q.E.D.
It remains to show an algorithm for finding the equations of the

fundamental distribution on (L] x@) xT"(F).
ProPOSITION b. Using (17), write formally the relations

dy? + 92 (y9) 0® = yPe,

(20) Ay +7 (", o], ", ¢) = b,
di'/ﬁ...{,_l‘l'gbﬁ...i,._l(yq’ seey ?/}1...3',._11 w’ ‘P;cy sery ‘ijl...j,._l) = yﬁ...i,_lﬂ’j-
Applying the exterior differentiation to the last row of (20) and replacing:

(a) d¢, ..., dqofl...j,._l, according to the structure equations of ¢,., (b) dw® by

3¢5, 0" A 0", according to the structure equations of @, (c) dy®, ..., dy} . .,
according to (20), we oblain an expression of the form

[d?/fl...i,. ‘|‘¢a...f,.(?lq’ seey 3[;11,,,1,, w® 'P;" ceey 99;1‘...j,)]’\9"' =0.
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Then the equations of the fundamental distribution on (LI, xG) xT" (F) are

dy® +nf () 0 =0,
(21) dy? + o7 (v, ?I?; (2’01 B;C) =0,

dyal iy +¢11 p Y. y;‘ll...j,.y é’aa 6_?; sy 6;:1..4,) =0,
where of, ..., w;-‘l___jr is the natural basis of I\.

Proof. (In this proof, we shall use freely the notation of [9].) Using [9],
we first deduce an algorithm for finding the equations of the fundamental
distribution on @, xT"(F). Since J'E or J‘(j"‘E) can be considered
as an associated bundle of the symbol (B, T:(F),d;, P)) or
(B Th (T (F), (G, WHW™(P) )) respectively and it holds JHTY(B)

= J" B, the results of [9] imply directly an a,lgomthm for finding the
equations of the fundamental distribution on G x 77 (F). Then we obtain
the equations of the fundamental distribution on G xT:(F) applying
the inclusions &, ¢ G% and T’ (F) < T%(F). This gives the following algo-
rithm. Let

ag® + 7% (79 0® = 0,
(22) dy? +¥7 (i, 73, 0%, o}) =0,

ayf. .y D (T 37;11...1,_1_’ w° @, ... —11 dp_y) =0

be the equations of the fundamental distribution on &' xT"~!(F).
Write formally the relations

. dy” + g (y") 0* = yP o',
(23) dy? + P (v% v, 0° 0)) =y} ',

d?/ﬁ...i,_l +gjzj'z...i,_1(yq9 vy yqu...j,._l’ 6% G;y sy a;l...j,_l) = yz‘ﬁ...i,._lj 0.
Applying the exterior differentiation to the last row of (23) and replacing

aor, . dﬁ,l i,_,s according to the structure equations of 6, and
ay?, .. (leil 4p_,s according to (23), we obtain an expression of the
form

[dyzl i,.+ 11 11.(:‘/(1’ ey ygl"“jf’ 00’ 0;’ . jl ] )]A 0‘7‘ = 0
Then the equations of the fundamental distribution on G xT.(F) are

dy® + 7% (y) 0" =0,
(24) ‘ dy? + 7 (y% v%, of w;) =0,

d?/ﬁ...t,. +Ti1;...¢, ¥ vy ?/}'1...1,., w® w;) seey w;'l,..j,.) = 0-‘
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Furthermore, there is a natural injection g — ji§ of G into T’ (G), where
g: R* > @ is the constant mapping « — g; in this sense we may write
G c T7,(@). Then I" x@ is a subgroup of G, = L7 xT; (@) and one sees
easily that its differential equations are

w;=0,""w;:1...'tr=0’ V=n+1,...,n+dimG.

Summarizing all these results into a direct algorithm, we obtain Pro-
position 5.
Remark 2. For »r =1, we obtain the following cquations of the
fundamental distribution on (L. x@)xT, (F)
dy® 415 (y") 0" = 0,
(25)

P

-+ i —ypit = 0.
Hence the invariant formula for the second absolute differential is
(26) da® +n% (a9 0® = af¢’,
(27) | da? + 0,72 (@) afe" — aP gl = aly'.

Remark 3. We shall evaluate the condition for af to be symmetric
in both subscripts. We have

dw® ='%c§ywﬁ/\w" —I-R?j(pi/\tpj,
dy¢* = ‘pi/\‘P;:

where Rj¢°A¢’ is the curvature form of I. The exterior differentiation
of (26) yields

[da?‘l"aqnf(a’r) a’{ilwa—'a'}] u’?a (aq ‘P’]NP = 0.

Comparing with (27), we find that af; are symmetric in both subscripts
if and only if

(28) na(aq)ngv ‘A = 0.

Since #¥(y?)w® = 0 are the differential equations of the stability group
of an clement of F, (28) can be explained geometrically as follows. Let G,
be the group of all isomorphisms of E,, let H, = G, be the stability group
of o(x)eE, and let g, or h, be the corresponding Lie algebra, cf. [10] or
[11]. The curvature form £2(«x) of I" at # can be considered as an element
of §,®42Ts(B) and (28) implies that (F2¢)(z) is holonomic if and only
if the projection of 2(x) into (g,/h,) ® 42T (B) vanishes. We have estab-
lished this result in a quite different way in [10], Proposition 1.
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