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CONTINUA WHOSE CONNECTED SUBSETS ARE ARCWISE
CONNECTED

BY

E. D. TYMCHATYN (SASKATOON, SASKATCHEWAN)

1. A continuum is a non-degenerate, compact, connected, metric
space. A continuum is said to be hereditarily locally connected if each of
its subcontinua is locally connected. A continuum is said to be regular
if it has a basis of open sets with finite boundaries. An arc is a homeomorph
of the closed unit interval [0, 1]. A space X is said to be arcwise connected
if for each x, ye X there is an arc in X which contains « and y.

Let A be a connected subset of a connected space X. A set C in X
is said to locally separate A in X if there is an open set U in X such that
UnA is connected and (UNnA)—C meets at least two components of
U —C. Apoint z¢ X is said to be a local cutpoint of X if {x} locally separates
X in X.

This paper* contains some partial solutions to the problem of charac-
terizing the continua whose connected subsets are arcwise connected.
It follows readily from a result in [4], p. 249, that these continua are here-
ditarily locally connected. In this paper, it is proved that if every connected
subset of a continuum X is arcwise connected, then the set of local cut-
points of X is uncountable and locally separates every proper subconti-
nuum of X. These results are used to prove that certain known heredi-
tarily locally connected continua contain connected subsets that are
not arcwise connected.

Most of our notation is taken from Dugundji [1]. It is with pleasure
that I acknowledge the help of Prof. L. Mohler who made many sugges-
tions regarding this problem.

2. The following is the key theorem of this paper. The proof is modeled
on one given by Kuratowski and Knaster in [5].

THEOREM 1. Let X be a continuum such that X = A,UA,VA,V...,
where A, # O and

* This research was supported in part by a grant from the National Research
Counecil.
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(i) A, contains at most a countable number of local cutpoints of X,
(ii) the sets A; are pairwise disjoint,
(iii) A, 48 closed for each i =1, 2, ...
Then X contains a connected subset that is not arcwise connected.
Proof. By an earlier comment, we may assume X is locally connected.

By a result in [2], p. 201, X = EUF, where neither ¥ nor F contains
a perfect subset.

Let B denote the set of points in A4, which are local cutpoints of
X and let Y = EUBUA,UA,U...

We shall prove that Y is a connected subset of X that is not arcwise
connected.

Suppose T is an arc in Y which meets both 4, and 4,. Let C = T —
—(BUA,UA,uU...). Then, C is a G5 in the complete space 7. By a the-
orem of Mazurkiewicz ([1], p. 308), C is topologically complete. By Sier-
pinski’s Theorem ([4], p. 173), C is uncountable. Hence, C = E contains
a perfect set. This is a contradiction. Thus, Y is not arcwise connected.

Suppose that Y is not connected. Then, Y = Cu D, where C is sepa-
rated from D. Since X is completely normal, there exists a closed set G
in X such that G separates C from D. Since F contains no perfect set and
@G is a compact subset of F, it follows that G is either countable or finite.
Clearly, X = E < CuD. Since G separates ¢ from D,Cn D is a closed
subset of @ which separates X. Let « be an isolated point of CnD and
let U be a connected neighbourhood of x such that CNDNTU = {z}.
Since x¢ CU D, it follows that z separates U. Thus, # is a local cutpoint
of X. Since xe¢A,, we have xe¢B. This contradiction proves that Y is
connected.

Theorem 1 may be restated as follows:

THEOREM 1'. If X is a continuum such that every connected subset of
X is arcwise connected and A, is a subset of X whose complement is the
union of countably many pairwise disjoint compact sets, then A, contains
uncountably many local cutpoints of X.

THEOREM 2. If X 48 a locally connected continuum which has only
countably many local cutpoints, then X has a connected subset which contains
no perfect set.

Proof. Let A, = X and imitate the proof of Theorem 1.

The triangular Sierpinski curve R is defined in [4], p. 276, and in [5].
It is easy to see that the local cutpoints of R are contained among the
vertices of the countable number of triangles that are used to define R.
From Theorem 2, we get the following theorem of Kuratowski and
Knaster:

CoroLLARY 3 (Kuratowski and Knaster [5]). The triangular Sierpinski
curve contains a connected subset which contains no perfect subset.
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3. In this section, we shall provide an application of Theorem 1.
We shall need the following two preliminary results:

PROPOSITION 4. Let X be a continuum. If there exists an ¢ > 0 and
a sequence A, of connected pairwise disjoint subsets of X such that for each
t =1,2,... the diameter of A; is greater than ¢, then X contains a connected
subset that is mot arcwise connected.

Proof. We may assume without loss of generality that each A; is
an arc and that X is hereditarily locally connected. Let 4 = A,V A4,V ...
By a theorem in [4], p. 272, A has only a finite number of components.
By Sierpinski’s Theorem, each component of A which contains more
than one of the arcs A; is not arcwise connected.

Definition. Let p be a metric for a space X. If A <« X and r > 0,
we let

S(4,r) ={xeX | o(x,y) < r for some yeA}.

LEMMA 5. Let X be a hereditarily locally connected continuum. If A
s an arc in X and ¢ > 0 is given, then there exists 6 > 0 such that every arc
m S(4, ) — A has diameter less than e.

Proof. It is proved in [4], p. 269, that a hereditarily locally connected
continuum contains no continuum of convergence.

THEOREM 6. If a continuum X contains a subcontinuum A, such that
no point of A, locally separates A, in X, then X contains a connected subset
that is mot arcwise connected.

Proof. We may suppose that X is hereditarily locally connected
and, by Proposition 4, that for every ¢ > 0, there exist at most finitely
many pairwise disjoint connected subsets of X of diameter greater than .

We may also assume that 4,is an arc. We identify 4, with the closed
unit interval [0, 1] and we let 4, have its usual linear order with initial
point 0.

We construct inductively a continuum Y in X such that Y satisfies
the hypotheses of Theorem 1.

Since the point 1 does not locally separate A, = [0,1] in X, there
exists an arc ¢ in X such that CnA4, = {a, b}, where 1/4<a<<1/2<Db
< 3/4 and where a and b are the end points of C.

For £> 0, let K, be the component of (S(A4,,&)UC)—A, which
meets C. Let a, (resp. b,) be the minimal (resp. maximal) point of K,nA4,.
We may assume that there is an arc C, in K,U{a,, b,} with endpoints a,
and b,. Otherwise, K,uU{a,, b,} would be a connected subset of X which
is not arcwise connected. We can ensure, by Lemma 5, that if we take
¢ > 0 to be sufficiently small, then 1/4 < a,<a<1/2<b<b, < 3/4

Pick such an ¢ > 0 and denote C, by C(1/2, 1), a, by a (1/2, 1) and b,
by b(1/2,1). Since a (1/2,1) does not locally separate A,, there exist
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arcs of arbitrarily small diameter in X —{a(1/2,1)} which meet both
components of 4,—{a(1/2,1)}. From the way C(1/2,1) was constructed
it follows that C (1/2, 1) is disjoint from these small diameter arcs. A similar
situation exists at b(1/2,1). This argument proves that C(1/2,1) does
not locally separate A, in X.

Let A, = C(1/2,1). Suppose that 4,,..., 4,_, have been constructed
to be pairwise disjoint sets such that, for each ¢ =1,...,n—1,

(i) 4; is the union of a finite number of arcs each of which meets
A, in precisely two points,

(ii) no point of [1/2¢,1—1/2°] separates A,V A,,

(iii) 4; does not locally separate 4, in X,

(iv) AgNA; = J1/20+!,1—1/2¢+1 [,

For each ze[1/2", 1—1/2"], let C, be an arc in the complement of
A,V ... U4, , with end points a, and b, such that 1/2""' < a, <2< b,
<1-—1/2"*! and C,nA4, = {a,, b,}. This is possible since the set 4,u ...
UA,_,V{x} does not locally separate 4,in X. By the method used to con-
struct C(1/2, 1), we construct an arc C(x, n) in the complement of the
compact set A,U... UA, , with end points a(z,n) and b(z,n) such

that C(w, n)N A, = {a(x, n), b(z, n),}

1
——<a@,n)<a,<r<b,<br,n) <1-—

2n+1 2n+1

and C(z, n) does not locally separate A,in X.
The set of open intervals

{la(z, n), b(m, n)[ | me[1/2",1—1/2"]},

is an open cover for the compact set [1/2", 1 —1/2"]. Hence, there exist
Lyy ooy Lye[1/2", 1 —1/2"] such that

[1/2% 1—1/2"] = Ja(zy, n), b(@1, W)[ V...V a(Bp, 0), b(@, n)[.

Let 4, = C(xy,n)V ...uC0(x,,,n). It i3 not difficult to check that
conditions (i)- (iv) above hold for 4,,.

Let Y =A4,0U4A,VA,u... By hypothesis, there exists for each
¢ > 0 a natural number N, such that if m > N,, then every arc in 4,,
has length less than e. Thus, if m > N,, then 4,, = §(4,, ). It follows
that Y is a continuum. From the construction, it follows that the set
Y—(A,vAd,V...) contains no local cutpoints of Y. By Theorem 1, Y
contains a connected subset that is not arcwise connected.

The following example is due to Knaster (see [4], p. 284):

Example. Let R be the plane continuum consisting of the segment
0<z<1,y =0, of the semi-circles

2k—1\* , 1
T —n +y =7 y=0,
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where n =1,2,... and k =1,2,...,2" !, and of the semi-circles

2k—1)* 1
@— )+¢=—f— y<0,

2-3"

where n =1,2,... and k¥ =1,2,..., 3"

A. Lelek has conjectured that the continuum R contains a connected
subset that is not arcwise connected. The following theorem asserts that
Lelek’s conjecture is correct:

" COROLLARY 7. The continuum R in the above example contains a connec-
ted subset that is mol arcwise connected.

Proof. The segment 0 < # < 1, ¥y = 0, contains no points that locally
separate it in R. Thus, Theorem 6 applies to K.

Remark. It is not also difficult to construct a regular continuum
Y in the continuum R of the above example such that Y contains a connec-
ted subset that is not arcwise connected.

4. We now state a few general propositions and some open questions
concerning continua whose connected subsets are arcwise connected.

- Definition: A function f: X — Y is said to be monotonic if for each
yeY, f~'(y) is connected.

PrOPOSITION 8. Let f be a continuous, monotonic function of a continuum
X onto a Hausdorff space Y. If every connected subset of X is arcwise connec-
ted, then every connected subset of Y is arcwise connected.

Proof. Let A be a connected subset of Y and let x and y be two
points in A. Then, f~!'(A) is a connected subset of X. Let B be an arc
in f~!(A4) which meets both f~!(x) and f~'(y). Then, f(B) is a locally connec-
ted continuum in A which contains # and y. Hence, there exists an arc
in A which contains both # and v.

Question 1. Let X be a continuum such that every connected
subset of X is arcwise connected. Is X regular ¢ (P 766)

Question 2. Let X be a continuum which cannot be embedded in any
continuum Y such that Y is the union of a countable family of ares.
Does X contain a connected subset that is not arcwise connected ? (P 767)

Question 2 was motivated by the following result:

PROPOSITION 9. Let X be a continuum such that, for each & > 0, there
exist at most a finite number of pairwise disjoint, connected subsets of X of
diameter greater than. e. Suppose that if Y is any continuous, monotonic,
Hausdorff image of X, then Y can be embedded in a continuum Z such that
Z is the union of a countable family of arcs. Then, for every subset C of X
such that the arc components of C are compact, the arc-components of C
coincide with the components of C. (An arc-component of C is a maximal
arcwise connected subset of C.)
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Proof. Let C be a subset of X such that the path components of C
are compact. Let ~ be the equivalence relation defined on X by letting
x ~ 4y if and only if # = y or x and y lie in the same are-component of C.
Let = be the natural projection of X onto the quotient space X /~. Then =
is continuous and monotonic, and X/~ is Hausdorff. Let Z be a continuum
which contains X/~ such that Z is the union of a countable family of
arcs. It is easy to see that x(C) has trivial arc-components. By the Sum
Theorem, for dimension 0, it follows hat n(C) is 0-dimensional.

Question 3. Suppose X is a continuum which satisfies the hypo-
theses of Proposition 9. Is every connected subset of X arcwise connec-
ted ? (P 768)

Question 4. Let X be a continuum such that every subcontinuum
C of X contains a point that locally separates C in X. Is X regular ?
(P 769)

By [4], p. 269, X is hereditarily locally connected because X, clearly,
does not contain any non-trivial continua of convergence.

An affirmative solution to Question 4 would yield an affirmative
solution to Question 1.
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