CONCERNING TWO COVERING PROPERTIES

 \mathbf{BY}

RASTISLAV TELGÁRSKY (BRATISLAVA)

In this contribution we shall consider the following properties of topological spaces:

1° a space X has a closure-preserving cover of compact sets, i.e., there exists a family $\{C_i: i \in I\}$ of compact subsets of X such that $\bigcup \{C_i: i \in I\} = X$ and $\bigcup \{C_i: i \in J\}$ is closed in X for each $J \subset I$;

 2° a space X has a hereditarily closure-preserving cover of compact sets, i.e., there exists a family $\{C_i \colon i \in I\}$ of compact subsets of X such that $\bigcup \{C_i \colon i \in I\} = X$ and $\bigcup \{\overline{D_i} \colon i \in I\} = \bigcup \{\overline{D_i} \colon i \in I\}$, where $D_i \subset C_i$ for each $i \in I$.

Clearly, 2° implies 1°.

Property 1° was introduced by Tamano [9] and it was further studied by Potoczny [6], [7] and [8] and by the author [11] and [12].

Each space considered in this paper is assumed to be completely regular and each map is assumed to be continuous. For the topological background we refer to Engelking [1].

First draft of this paper has been sent to Proceedings of Japan Academy in June 1971 and its results were quoted, e.g., by Morita [5]. However, as there was much delay in dealing with it on the part of Proceedings, the paper has been eventually withdrawn and this is a new version made up to date only.

THEOREM 1. Each σ -compact space has a closure-preserving cover of compact sets.

Proof. Let X be σ -compact. Then $X = \bigcup \{C_n : n \geqslant 1\}$, where each C_n is a compact subset of X. Let us set $C'_n = \bigcup \{C_k : k \leqslant n\}$. Then it is easy to verify that $\{C'_n : n \geqslant 1\}$ is a closure-preserving cover of X of compact sets.

THEOREM 2. Each locally compact paracompact space has a hereditarily closure-preserving cover of compact sets.

Proof. Let X be locally compact and paracompact. Then X has a locally finite closed cover consisting of compact sets. Since each locally finite family of sets is hereditarily closure-preserving, the theorem follows.

Let E be a closed subset of X. By $E^{(1)}$ we denote the set of all points $x \in E$ such that $E \cap \overline{U}$ is not compact for any neighbourhood U of x in X. We set $X^{(0)} = X$, $X^{(a+1)} = (X^{(a)})^{(1)}$ and $X^{(a)} = \bigcap \{X^{(\beta)} : \beta < a\}$ for limit ordinal a. A space X is said to be C-scattered if $X^{(a)} = 0$ for some ordinal a. C-scattered spaces were studied in [10] (cf. also [11] and [12]).

THEOREM 3. Let X be a C-scattered space such that $X - X^{(a)}$ is paracompact for each ordinal a. Then X has a closure-preserving cover of compact sets.

Hence, if X is C-scattered and hereditarily paracompact, then X has a closure-preserving cover of compact sets.

Before the proof of Theorem 3 we prove two lemmas.

LEMMA 1. Let X be a paracompact space such that for a locally compact closed subset Z of X the subspace X-Z of X has a closure-preserving cover of compact sets. Then X has a closure-preserving cover of compact sets.

Proof. Let X be a paracompact space, let Z be a locally compact closed subset of X, and let $\{C_i\colon i\in I\}$ be a closure-preserving cover of X-Z consisting of compact sets. There exists a locally finite family $\{U_t\colon t\in T\}$ of open sets in X such that $Z\subset\bigcup\{U_t\colon t\in T\}$ and $Z\cap\overline{U_t}$ is compact for each $t\in T$. We set $Y=X-\bigcup\{U_t\colon t\in T\}$ and $C_i'=C_i\cap Y$ for each $i\in I$. Then Y is a closed subset of X and $\{C_i'\colon i\in I\}$ is a closure-preserving cover of Y consisting of compact sets. We set $C_{t,i}=(\overline{U_t}\cap Z)\cup(\overline{U_t}\cap C_i)$, where $t\in T$ and $i\in I$. Clearly, each $C_{t,i}$ is compact. It remains to prove that the family

$$\mathscr{A} = \{C'_i : i \in I\} \cup \{C_{t,i} : t \in T \text{ and } i \in I\}$$

is a closure-preserving cover of X. Clearly, $\mathscr A$ covers X. Let $\mathscr A' \subset \mathscr A$. Then there exist $I' \subset I$, $T' \subset T$ and $I_t \subset I$, where $t \in T'$, such that

$$\mathscr{A}' = \{C'_i : i \in I'\} \cup \{C_{t,i} : t \in T' \text{ and } i \in I_t\}.$$

Clearly, $\bigcup \{C'_i \colon i \in I'\}$ is a closed subset of Y and thus it is closed in X. We set $D_t = \bigcup \{C_{t,i} \colon i \in I_t\}$ for each $t \in T'$. Since the family $\{D_t \colon t \in T'\}$ is locally finite in X, it is sufficient to point out that D_t is closed in X for each $t \in T'$. Let $t \in T'$. Since $\bigcup \{\overline{U_t} \cap C_i \colon i \in I_t\}$ is closed in $\overline{U_t} - Z$, it follows that its closure in X is contained in

$$\bigcup \{\overline{U_i} \cap C_i \colon i \in I_i\} \cup (\overline{U_i} \cap Z).$$

Thus $\bigcup \{C_{t,i} : i \in I_t\}$ is closed in X. Therefore $\mathscr A$ is closure-preserving. LEMMA 2. Let $\{F_t : t \in T\}$ be a locally finite closed cover of X and let $\{C_{t,i} : i \in I_t\}$ be a closure-preserving cover of F_t consisting of compact sets for each $t \in T$. Then $\{C_{t,i} : i \in I_t, t \in T\}$ is a closure-preserving cover of X consisting of compact sets.

The proof being easy is omitted.

Proof of Theorem 3. We proceed by induction with respect to a such that $X^{(a)} = 0$. If a = 0, then X = 0 and the theorem is true. Let $a = \beta + 1$. Then $X^{(\beta)}$ is a locally compact closed subset of X and, by the inductive assumption, $X - X^{(\beta)}$ has a closure-preserving cover of compact sets. Hence the theorem follows from Lemma 1. Let a be a limit ordinal. Then $\{X - X^{(\beta)} : \beta < a\}$ is an open cover of X. Let $\{F_i : t \in T\}$ be a locally finite closed refinement of $\{X - X^{(\beta)} : \beta < a\}$. Then for each $t \in T$ there exists $\beta_i < a$ such that $F_i^{(\beta_i)} = 0$. It follows from the inductive assumption that F_i has a closure-preserving cover of compact sets for each $t \in T$ and the theorem follows from Lemma 2.

As a corollary to Theorem 3 we have

THEOREM 4. Each C-scattered metrizable space has a closure-preserving cover of compact sets.

For scattered spaces one can prove (in the same manner as for C-scattered spaces) the following

THEOREM 5. Each hereditarily paracompact scattered space has a closure-preserving cover consisting of finite sets.

THEOREM 6. Let us assume that there exists a perfect map from a space X onto a space Y. Then X has a closure-preserving cover of compact sets if and only if Y has a closure-preserving cover of compact sets.

The theorem follows from Lemma 3 and Lemma 4.

LEMMA 3. Let f be a closed map from a space X onto a space Y and let $\{C_i: i \in I\}$ be a closure-preserving cover of X consisting of compact sets. Then $\{f(C_i): i \in I\}$ is a closure-preserving cover of Y consisting of compact sets.

Indeed, $f(C_i)$ is compact, since f is continuous. The family $\{f(C_i): i \in I\}$ is closure-preserving, because f is a closed map and f preserves unions (cf. [3]).

LEMMA 4. Let f be a perfect map from a space X onto a space Y and let $\{C_i: i \in I\}$ be a closure-preserving cover of Y consisting of compact sets. Then $\{f^{-1}(C_i): i \in I\}$ is a closure-preserving cover of X consisting of compact sets.

Indeed, $f^{-1}(C_i)$ is compact (cf. [1], p. 167). The family $\{f^{-1}(C_i): i \in I\}$ is closure-preserving, because f is continuous and f^{-1} preserves unions.

THEOREM 7. A space X has a hereditarily closure-preserving cover of compact sets if and only if X is a closed image of a locally compact paracompact space.

Let us note that closed images of paracompact locally compact spaces were studied by Ishii [2] and Morita [4].

Theorem 7 follows from Theorem 2 and from Lemmas 5 and 6.

LEMMA 5. Let $\{C_i: i \in I\}$ be a hereditarily closure-preserving cover of X consisting of compact sets. Let us set

$$X' = \bigcup \{C_i \times \{i\} : i \in I\} \subset X \times I,$$

where I is considered as a discrete space and X' as a subspace of $X \times I$. Then the space X' is paracompact and locally compact and the projection $f \colon X' \to X$, defined by setting f(x, i) = x, where $x \in C_i$ and $i \in I$, is continuous and closed.

Proof. The space X' is paracompact and locally compact because it is the free union of compact spaces. We claim that f is continuous. Let $E \subset X$. Then

$$f^{-1}(E) = \{(x, i) \in X' : x \in E\} = \bigcup \{(E \cap C_i) \times \{i\} : i \in I\}.$$

Hence, if E is a closed subset of X, then the set $f^{-1}(E)$ is closed in X'. We claim that f is closed. Let E be a closed subset of X'. Then $E \cap (C_i \times \{i\})$ is a closed subset of $C_i \times \{i\}$. Let us set $D_i = \{f(x, i) : (x, i) \in E\}$. Then D_i is a closed subset of C_i , because $f \mid (C_i \times \{i\})$ is a homeomorphism. We have

$$f(E) = f(\bigcup \{E \cap (C_i \times \{i\}): i \in I\}) = \bigcup \{f(E \cap (C_i \times \{i\})): i \in I\}$$
$$= \bigcup \{D_i: i \in I\}.$$

Since the family $\{C_i: i \in I\}$ is hereditarily closure-preserving, it follows that the set $\{J\}$ $\{D_i: i \in I\}$ is closed in X. Hence f(E) is a closed subset of X.

LEMMA 6. Let f be a closed map from a space X onto a space Y and let $\{C_i: i \in I\}$ be a hereditarily closure-preserving cover of X consisting of compact sets. Then $\{f(C_i): i \in I\}$ is a hereditarily closure-preserving cover of Y consisting of compact sets.

Proof. Let D_i be a closed subset of $f(C_i)$ and let $E_i = C_i \cap f^{-1}(D_i)$. Then $f(E_i) = D_i$. Since the family $\{C_i : i \in I\}$ is hereditarily closure-preserving and E_i is a closed subset of C_i for each $i \in I$, it follows that the set $\bigcup \{E_i : i \in I\}$ is closed in X. Since the map f is closed, $f(\bigcup \{E_i : i \in I\})$ is closed in Y. However,

$$f(\bigcup \{E_i: i \in I\}) = \bigcup \{f(E_i): i \in I\} = \bigcup \{D_i: i \in I\}.$$

Hence $\bigcup \{D_i : i \in I\}$ is a closed subset of Y and, therefore, the family $\{f(C_i): i \in I\}$ is hereditarily closure-preserving.

THEOREM 8. Let $\{C_i : i \in I\}$ be a hereditarily closure-preserving cover of a space X consisting of compact sets. Then for each compact subset C of X there exists a finite subset J of I such that $C \subset \bigcup \{C_i : i \in J\}$.

Proof. Let X' and f be the same as in Lemma 5 and let C be a compact subset of X. Suppose that C is not contained in the union of any finite subfamily of $\{C_i : i \in I\}$. Then there exist sequences $\{x_n : n \in N\} \subset C$ and $\{C_{i_n} : n \in N\} \subset \{C_i : i \in I\}$ with $x_1 \in C_{i_1}$ and $x_{n+1} \in C_{i_{n+1}} - \bigcup \{C_{i_k} : 1 \le k \le n\}$ for each $n \in N$. Since $\{(x_n, i_n) : n \in N\}$ is a closed discrete set in X' and the map f is closed, the set $\{f(x_n, i_n) : n \in N\} = \{x_{i_n} : n \in N\}$ is discrete and closed in X. It contradicts, however, the compactness of C.

Theorem 9. If a space X has a hereditarily closure-preserving cover consisting of paracompact closed subsets of X, then X is paracompact.

Proof. Let $\{P_i : i \in I\}$ be a hereditarily closure-preserving cover of X, where P_i is a paracompact closed subset of X for each $i \in I$. Let \mathscr{A} be an open cover of X. For each $i \in I$ there exists a locally finite family \mathscr{A}_i of closed subsets of X such that \mathscr{A}_i refines \mathscr{A} and $\bigcup \mathscr{A}_i = P_i$. It is easy to point out that the family $\bigcup \{\mathscr{A}_i : i \in I\}$ is closure-preserving. By the theorem of Michael [3], X is paracompact if and only if each open cover of X has a closure-preserving closed refinement. Hence the theorem follows.

REFERENCES

- [1] R. Engelking, Outline of general topology, Amsterdam 1968.
- [2] T. Ishii, On product spaces and product mappings, Journal of the Mathematical Society of Japan 18 (1966), p. 166-181.
- [3] E. Michael, Another note on paracompact spaces, Proceedings of the American Mathematical Society 8 (1957), p. 822-828.
- [4] K. Morita, On closed mappings, Proceedings of the Japan Academy of Sciences 32 (1956), p. 539-543.
- [5] Some results on M-spaces, Colloquia Mathematica Societatis János Bolyai,
 8. Topics in Topology, p. 489-503, North Holland Publ. Co., Amsterdam 1974.
- [6] H. Potoczny, A nonparacompact space which admits a closure-preserving cover of compact sets, Proceedings of the American Mathematical Society 32 (1972), p. 309-311.
- [7] On a problem of Tamano, Fundamenta Mathematicae 75 (1972), p. 29-31.
- [8] Closure-preserving families of compact sets, General Topology and its Applications 3 (1973), p. 243-248.
- [9] H. Tamano, A characterization of paracompactness, Fundamenta Mathematicae 72 (1971), p. 189-201.
- [10] R. Telgársky, C-scattered and paracompact spaces, ibidem 73 (1971), p. 59-74.
- [11] Closure-preserving covers, ibidem 85 (1974), p. 165-175.
- [12] Spaces defined by topological games, ibidem 88 (1975), p. 193-223.

INSTITUTE OF MATHEMATICS SLOVAK ACADEMY OF SCIENCES

Reçu par la Rédaction le 30. 3. 1975