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Let A = (4; -)> be a semilattice (2), that is - is an idempotent, commu-
tative, and associative binary operation. If |[A]| > 1, then for every n > 2
there is exactly one n-ary polynomial depending on all » variables, namely
Xy &y°... %, . Obviously, the only unary polynomial is ¢; (that is, the
polynomial p(z) = z).

For an algebra U and n > 2 let p,(A) denote the number of n-ary
polynomials depending on all » variables (called essentially n-ary poly-
nomials). Let p,(A) denote the number of non-constant unary polyno-
mials other than ¢, and let p,(A) be the number of constant unary poly-
nomials. A sequence (Pgy ...y Pny.-.» i8 called representable (3) if there
exists an algebra A with p, = p,(A) for all n.

Using these concepts we can say that a semilattice (with more than
one element) represents the sequence <{0,0,1,...,1,...>. In this note
we prove that this is the only bounded representable sequence that starts
with two zeros and has no more zeros.

Since every algebra representing <0,0,1,...,1,...> is equivalent
to a semilattice, the above property characterizes semilattices.

The theorem we prove is somewhat stronger:

THEOREM. Let A be an algebra satisfying p,(A) = p,(A) = 0. If
1 < py(A), and for some integer k, 1 < p,, (W) < k for infinitely many n, then
P (A) =1 for all n > 2, and W is equivalent to a semilattice.

(!) This research of both authors was supported by the National Research
Council of Canada.

(3) We use the notation of [2]; for all undefined concepts see [2].

() See [3] and [4], of which the present paper is a continuation. It is explained
in [4] how the problem of representability is connected with Problem 42 of [2].
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COROLLARY. The bounded sequence (0,0, pyy Psy...>y P, 0,1 2 2,
i8 representable if and only if p, = 1 for all n > 1.

The proof of the Theorem is based on a recent result of Dudek [1]:

Let W = {A;.->, where - is a binary idempotent operation. Then either
A is a semilattice, or WA is a diagonal algebra (that is x* = x and (2y)z = x(yz)
= x2), or p,(W) = n for all n > 2.

Henceforth let %A be an algebra satisfying the conditions of the The-
orem. Since 1 < p,(A), there is a binary polynomial -. By Dudek’s theorem
- is either a semilattice or diagonal. The following lemmas prove that - can-
not be diagonal.

Call an n-ary polynomial p(x,,...,x,_,) of A transitive if for i, j < n,
© # j, there exists a permutation a of {0, ..., n—1} such that ia = j and

(*) P(Loyeevy Zp_y) = P(oay -y Tin—1)a)-

LEMMA 1. Let 1 < p, () < n, and let p(xy, ..., x,_,) be an essentially
n-ary polynomial of . Then p is transitive. '

Proof. Assume that p is non-transitive. Then {0,...,n—1} =
=XoV...u X, ,, where t>1, and ¢,jeX, for some a<t if 4a =j for

some permutation a and (*) holds. If | X,| =k,, we can get at least (k )

different polynomials from p by permuting the variables, contradicting
P <n.

LeMMA 2. Let p(xy,y ..., ®,_,) be a transitive essentially n-ary polyno-
mial and - an essentially binary diagonal polynomial. Then p, = p-x,, ...,
Pn_1 =P %,_, are all distinct essentially n-ary polynomials.

Proof. Consider p(@gy ..., 2,_,) 2, =f; [ depends on z,, otherwise
after setting z, = ... = x,_, we would get that z, -z, does not depend
on z,. Since p is transitive, f depends on all x,,...,2,_, or on none of
them. In the latter case we again set z, =... =, ,, and get the
contradiction that z,xz, does not depend on z,. Thus f is essentially
(n+1)-ary.

Po depends on z,, otherwise up, = ur, does not depend on z,. If
P, does not depend on, say, z,, then p,x, does not depend on z, either,
contradicting p,z, = f, and that f is essentially (n+1)-ary. Thus all
p; are essentially n-ary.

If, say, po = p1, then up, = up,, that is uz, = ux,; this contradiction
completes the proof of Lemma 2.

Now if - is diagonal, choose an » such that 1 < p, < n. Let p be an es-
sentially n-ary polynomial. Then, by Lemma 1, p is transitive. By Lem-
ma 2 there are at least n essentially n-ary polynomials, a contradiction.

So we can assume that -is a semilattice operation. This case will
be handled based on the following result:
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LEMMA 3. Let p(%,,...,®,_,) be an essentially n-ary poly'nomwl of
W which is not a polynomial of (A;+>. Let m = 3n. Then
T @0y vesy Bu_1y Yoy voey Yme1) =P Boy ooy Tuy) Yo© «- " Ym—
8 an essentially (n+m)-ary polynomial and f is mot transitive.
Proof. Obviously, f depends on ¥,,...,%,_, since substituting
T=0y=...=o,_, we get x-yy°...* Y,,_, which depends on ¥y, ..., ¥,p_;-

To show that f depends on x,,...,2,_,, say x,, take a substitution a =
=P (®gy.eeyly_y) ZP(0gyQgy...,a,_;)=b, showing that p depends on z,;
let, say, a # ab and set yo=... =¥,,_, = a. Then f(ay,...,a,_;,a,0a,...)
=aa =a and f(ay, @y ..., @y_;,a,0a,...) =ba, a # ba, showing that
f depends on z,.

Now assume that f is transitive. Then there is a permutation a,; of
{®oy «ovy Bn_1y Yoy oy Ym—a} sSuch that f(@o, ..., Yo, -..) = f(@oayy ...,
Yoa;,...) and x;a; = ¥,. Since any permutation of {y,, ..., ¥,,_,} leaves f
unchanged, we can assume that {x,,...,2,_;}a; S {Yo)..-y Yp_1}, and
{@os - s @ui} @i S Yoy ens Yona} ‘

First we apply a, to f; this takes x, to y,; then we permute the
variables outside of p to take all the x; outside of p into {y,,, ..., ¥3n_1}
Then we apply a, to take z, to y,, unless x, is already out, and move
%y t0 {Yony --+y Y3,_1} While keeping all the x; in this set fixed. In n steps
every variable within p will be a y; and {%,,...,,_,} takes the place

Oof {Yany-evs Ysn—1}

Substitute ¥y, = ... = y,,_; = y. Then we get
P@os ooy T )Y oo Y =Py ooy Y)Y e YT oo By_yy
that is _
P@oy ooy @ 1)y =Y Tg.o. By_y,
and so
P(@oyeeny Bp_y) =P (@oy evvy By1) D (Toy «ory Tpy)
= P (g eevy Bp_1) By *eee® Bp_qy = By*eee Ly _1" Ly eeo"Bp_y
=$o'...'wn_1,

contradicting the assumption that p is not a semilattice polynomial. This
completes the proof of the lemma.

To complete the proof of the Theorem let - be a semilattice operation,
and let A be not equivalent to a semilattice. Then there exists an integer
n, and an essentially n-ary polynomial p (z,, ..., @,_,) which is not a semi-
lattice polynomial. Choose a ¢>mn with p,< k,? >k, and t—n > 2n.
Then f(@g, ..., ®_1) =P (Toy.evy Xp_1)Bp ... %_, i8 by Lemma 3 a non-
transitive polynomial, hence p, > ¢ by Lemma 1, contradicting p, < k < t.
This completes the proof of the Theorem.
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The proof shows that we verified the conclusion of the Theorem
under somewhat milder conditions than the ones given. Namely, it suffices
to assume that po(A) = p,(A) = 0,1 < p,(A), there exists an m > 2 with
1<9,A)< m, and p, () < n for infinitely many n.

This statement would be obvious with “p,, (W) < »” in the last clause.
We can write “p,(A) < n” because in fact Lemma 3 gives n+m—+1
essentially (n-4- m)-ary polynomials. Indeed, we get n-+ m from Lemma 1,
and we have one more: %,... %, ;Yo ... Ym_1- Since- this is essentially
(n+ m)-ary, it suffices to see that p(@g, ..., Xp_1)¥o -+« Ym—1 7 Lo --+ Tp_1" Yo
ves Ym_1- If they were equal, then p(zy,..., 2, ;)% Ym—; Would be
transitive, contradicting Lemma 3. '

REFERENCES

[1] J. Dudek, Number of algebraic operation in idempotent groupoids, Colloguium
Mathematicum 21 (1970), p. 169-177.

[2] G. Griatzer, Universal algebra, The University Series in Higher Mathematics,
Princeton, N. J. 1968.

[3] G. Gritzer and J. Plonka, On the number of polynomials of a universal algebra,
II, this fascicle, p. 13-19.

[4] — and A. Sekanina, On the number of polynomials of a universal algebra, I,
this fascicle, p. 9-11.

UNIVERSITY OF MANITOBA

Regu par la Rédaction le 18. 6. 1969



