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1. Introduction. Let ¢ be the sum-of-divisors-function, and ¢ the Euler
function. Put
o,(n)=0(n), o,(n)=e
and for k> 1 ‘
oM =0.(0k-1 (M), (1) = @1 (s ().
Schinzel [6] conjectured that for every k

(1) tim inf 2"
n-—a n
The conjecture (1) is known to be true for k=1,2 (see [5] and [6]).
Makowski [4] showed that (1) is true if another conjecture of Schinzel is
true, namely the conjecture H on the existence of an infinity of certain prime
k-tuples (see [7]).
The analogous relation for ¢,:

< 00

ok (n)

limsup >0

n—®

is trivial because ¢, (2™) = 2™ *. These differences in difficulty seem to vanish

if we ask for quantitative results. Denote by N,(k, @, x) the number of

integers n < x for which o,(n) <an, and by N,(k, a, x) the number of

integers n < x for which ¢, (n) > an. Erdds [2] found the following results:
For arbitrarily large ¢t and for x > x,(¢) we have

No(2, 2, %) > o (oglog x,
and for every a >0, ¢ >0, and x > x,(¢, ) we obtain
x
—1
N,(2, a, x) < log x (log x¥’,

x
log? x

Na(3a a, X) < (lOg x)e. \
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For every a <1/2, >0, t >0, and x > x¢(a, t, ¢) we have

]0; — (loglog X} < N, (2, a, ) < E)%(mg X

further, for every a > 0, ¢ > 0, and x > x,(a, £) we get
N,Q3, a, x)<l orx (log x)°.

The purpose of this paper is to obtain lower estimates for N,(3, a, x)
and N,(3, a, x) for appropriate values of a. This includes an unconditional
proof of (1) for k = 3.

THEOREM 1. For a > ay and x > xq(a) we have

(2 N,(3, a, x) > log_zx;
especially,
lim inf "3"(”) <

THEOREM 2. For a <ay; and x > x,(c) we have

3) . N,(3, a, x) > log? x"

It is possible to improve (2) and (3) as follows:

4) N,(G, a, x)> (loglogx)‘

Jor a >ay and x > xq(a, t), where t is arbltrarily large; and
(5 N,(3, a, x) > —— log (loglog x)*

for a <ay; and x > x,(a, t), where t is arbitrarily large.

For the sake of simplicity we prove only (2), the proof of (3) being
completely analogous. At the end we indicate the modifications Wthh are
necessary to prove (4) and (5).

2. Preliminary lemmas.

Notation. Throughout this paper the letters p, q always denote

primes, and c,, c,, ... denote absolute positive constants.
Put

— ,1 = .
e(n) = pzlv:' (p) 1
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LEMMA 1. We have

© 2 < explesotm).

Proof. Indeed, we get

70 <11 (14+ ) =exp {5 og (14 )] <enpler o)

pin pin
Put
nix,d, )= Y L
p= l(fni)‘dd)

LEMMA 2 (Brun-Titchmarsh theorem). We have

n(x,d, I)<¢M)I3W ifd,l)=1,1<d<x.
For the proof see [3], p. 110, Theorem 3.8.
Put
M@B,v)= ) 1, where f>1,v>1.
PN

LEMMA 3. We have
v
7 M@B,v)<c, ———.
( ) (B U) C2 logv logﬂ
Proof. A simple computation together with the application of Lemma 2
gives
' 1

Y e+ ¥ Y -+ ¥ o2
2<psv 2<p<v q<v1/2 q 2<psv
qip+1
1 12 v
QC3 Z - Z 1+v <C4 ’
q<v129  p<v logv
p=— 1(modq)

which together with (6) implies (7).
LeEMMA 4 (Bombieri [1]). For every D > 0 there exists an E > 0 such that

liy
max. max [n(y, d, [)— ——| = O(x(log x)~?2),
del/z(Iogx)—E y<x @h=1 (d)
where
* dt
lix=|—
il ogt
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3. Notation and results from sieve theory. The proof of Theorem 1 is
mainly based on sieve results. We adopt the notation, which is used by
Halberstam and Richert [3] in their treatment of the Selberg sieve.

Let A denote a finite sequence of (not necessarily distinct) integers, and
B a subset of the set P of primes, especially put By = {p: pfK} for every
integer K. Let z > 2 and

S(U, B, z) =|{acW: (a, P(z)) =1}/, where P(z) =[] p-

p<z
pe'B

Let w denote a multiplicative function defined for all square-free numbers so
that w(p) = 0 if p¢ P. Choose an approximation X > 1 for || and define for

uld #0

R, =|{aeA: a =0 (modd)}|— %d) X.
Put
Wiz) =[] (1— w_(p_))

p<z 14

We then have
LEMMA 5. Let w satisfy the conditions

o _,_1
Q 0 —<1——o)
(£2y) » 4,
(2, (%)) y “’—(”’;ﬁfgxlogémz if 2<w<z,

wsp<z

where » >0, A; =21, A, = 1 are suitable constants, and let £ > z. Then

S(A, B, z) = XW(2) {140, 4,.4, (exp{—t(logt+1)})} +6 Zz 3@ R,
d| P(z)
where

log ¢
=" <1, = .
T e 0] <1 v(d) E 1

g pld
For the proof_ see [3], Theorem 7.1, p. 206.

4. Proof of Theorem 1. Let x be a sufficiently large real number. Apply
Lemma 5 with

={p+1: 2<p+1<x}, P=9P,, X=lix,

op)=— @>2.
p—1
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We have

Rd=

n(x—1,d, —1)— —|.
Q

Using the trivial estimate |R;| < x/d we obtain

9v(d) 1/2
y 3 |R.,|<x“2(22 w2 (d) d) (X IR,

d<¢ d<& d<g?
d| P(z) d|P(z) d| P(z)

A simple computation gives (see [3], p. 115, Lemma 3.4)

. v(d) 9
> u’(d)_gd < X “(d"—"dg)s(z %) < (log&*+1)°.

d<§2 dy..dg <f2 dl e d9 n<¢

Lemma 4 implies, if we choose ¢2 = x(log x) £, where E is sufficiently large,
the inequality

Y IR, < x(logx)™'%.
d<g?

In total we have

v(d) = X
422 3@ Ry 0(log2 x)'

d|P(z)

From a well-known theorem of Mertens which states that
1
Y. —=loglogx+a+o(l)
p<x

we get

W(z) = 10% (1+o(1)) (z— o0).

All these estimates now imply that for arbitrarily large C > 0 there exists a y
= 9(C) > 0 such that

X
$2 .
(8) S(QI’ %2’ X ) > C log2x3

in the opposite direction Lemma 5 gives

(9) S(Q[’ \$2a xl/3) < Ce lOgZx'



128 H. MAIER

From (8) and (9) we conclude that there exist a y > 0 1ndependent of x and a
set B = B(x) of primes such that

2x
(10) .IQBI >Bg2—x’
(11a) peB=2<p+1<x
(11b) peB=(p+1, P(x") =1,
(11c) peB=(q#2,qlp+1=>x"<q<x'7).

We now remove from B the subset € = €(x) consisting of those p for which
p+1 is divisible by the square of a prime g > x” or by any prime q > x” with
A(q) = B, B to be determined later. We set

B(q) = {ng(ng—1): n < x/q}.
For € we have the estimate

12 < Y S(B(g), Bz, x})+0(x'77), where 0< <.

xV<q<x1—7
AMq=p

Once more we apply Lemma 5 with A =B(g), B="P,, £ =x""%,
z =x"2, and we obtain

S(%(q), “BZ’ xé) S Cq

x
qlog?x’

Using (12) we now get

1
Y —+0(x'7).
xV<qg<xl—7Y
M@y zp

€] < cg

log? x

Applying Lemma 2 in estimating the last sum we have

1 Cy
Z -<
x’<q<xl—Y q logﬂ
A@=p
and, consequently,
x
€] <

= C1o log B log? x’
For sufficiently large f we obtain

X

(13) €] < ooZ x
og?x’
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Put D = B-C. Then (10) and (13) give

(14) 1Dl

~ log?x’
The primes pe D satisfy (11a), (11b), and

o(g+1)
qg+1

q#2,qlp+1= < B.

We now estimate o5 (p)/p for pe D. Set [1/y] = L. We then have

p+1=2¢q,,...,q,, where s<L,

and
o3(p) =c,(p+1) < 27*! [] o(gi+1)
gjlp+ 1
qi*2
<2 B ] @+D)<22h" (p+1).
gilp+1
q;i#2
Therefore
(15) "3;” ) <208,

which together with (14) proves Theorem 1.

5. Improvement of Theorem 1. For proving the sharper estimate (4) we
use the following theorem of Erdds ([2], Theorem 2):

For every t the number of integers m < y for which a,(m) < 2m is larger
than

y
logy

C11 (loglog yy'.
Set €= {m < x'*: g,(m) <2m}. Instead of sieving the single set
A= {p+1< x} we sieve the family of sets

1
WA (m) = {%— p<x, p+1=0 (modm)}, me €.

The theorem of Bombieri allows us to control the remainder terms in.
average (“for almost all” m).

From the sifted sets we again remove the elements which are divisible by
any g for which A(q) is large. The resulting estimates yield (4); the estimate
(5) is obtained analogously.

9 - Colloquium Mathematicum XLIX.1
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