[1] S. Banach, C. Kuratowski, Sur une généralisation du problème de la mesure, Fund. Math. 14 (1929), pp. 127-131.
[2] C. C. Chang, Descendinqly incomplete ultrafilters, Trans. Amer. Math. Soc. 126 (1967), pp. 108-118.
[3] P. J. Cohen, The independence of the continuum hypothesis, I, II. Proc. Nat. Acad. Sci. U.S.A. 50 (1963), pp. 1143-1148; 51 (1964) pp. 105-110.
[4] P. J. Cohen, Set theory and the continuum, hypothesis, New York 1966.
[5] W. B. Easton, Powers of regular cardinals, Princeton University Dissertation, 1964.
[6] P. Erdös and A. Hajnal, On a problem of B. Jónsson, Bull. Acad. Pol. Sci. Ser. Math., Astr. et Phys. 14 (1966) pp. 19-23.
[7] P. Erdös, A. Hajnal and R. Rado, Partition relations for cardinal numbers, Acta Math. Acad. Sci. Hungar., 16 (1965), pp. 93-196.
[8] P. Erdös and A. Tarski, On some problems involving inaccessible cardinals, Essays on the Foundations of Mathematics, Jerusalem 1961, pp. 50-82.
[9] H. J. Keisler and F. Rowbottom, Constructible sets and weakly compact cardinals, Amer. Math. Soc. Notices 12 (1965), p. 373.
[10] H. J. Keisler and A. Tarski, From accessible to inaccessible cardinals, Fund. Math. 53 (1964), pp. 225-308.
[10a] H. J. Keisler, A survey of ultraproducts, Logic, Methodology and Philosophy of Science. Proceedings of the 1964 International Congress, 1965.
[11] A. Levy and R. M. Solovay, Measurable cardinals and the continuum hypothesis, Israel Journal of Mathematics 5 (1967), pp. 234-248.
[12] K. Prikry, Measurable cardinals and saturated ideals. Amer. Math. Soc. Notices 13 (1966), p. 720.
[13] F. Rowbottom, Doctoral Dissertation, University of Wisconsin, 1964.
[14] D. Scott, The independence of certain distributive laws in Boolean algebras, Trans. Amer. Math. Soc. 84 (1957), pp. 258-261.
[15] D. Scott and R. Solovay, Boolean-valued models for set theory, to appear.
[16] W. Sierpiński, Hypothèse du continu, Chelsea 1956.
[17] R. Sikorski, On an unsolved problem from the theory of Boolean algebras, Coll. Math. 2 (1949), pp. 27-29.
[18] R. Sikorski, Boolean algebras, 1964.
[19] J. Silver, Some applications of model theory in set theory, Doctoral Dissertation, University of California 1966.
[20] J. Silver, The consistency of the generalized continuum hypothesis with the existence of a measurable cardinal, Proceedings of the 1967 Summer Institute on Axiomatic Set Theory in Los Angeles, to appear.
[21] J. Silver, The independence of Kurepa's conjecture and two-cardinal conjectures in model theory, Ibid.