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: MODIFIED GRAM—SCHMIDT
FOR SOLVING LINEAR LEAST SQUARES PROBLEMS
IS EQUIVALENT TO GAUSSIAN ELIMINATION
- FOR THE NORMAL EQUATIONS

Abstract. Gaussian elimination for the normal equations written in a suitable way is
algebraically and numerically equivalent to the modified Gram-Schmidt process simultaneously
applied to both the given coefficient matrix and the right-hand side.

Let A be a real (mxn)matrix with m>n and beR™ Solving the
Overdetermined linear system of equations

Ax=b
. \ .
for xeR" in the least squares sense means to determine x such that
" |Ax—b|, »min. .

By assuming rank(4) = n, x is unique and can be found by solving the
So-called normal equations ‘
1) ATAx = ATb. A
In most situations it is recommended for a numerical solution of the problem
ot to use (1) but to apply an orthogonalization method for A (and b) based on
Householder transformations or the modified Gram-Schmidt (MGS) method
([1], [27). MGS and Householder programs have found to be of essentially
€quivalent accuracy [2]. In this note we show that the Gaussian elimination for
i{l) written in a suitable way is algebraically and numerically equivalent to
GS. : S
Denoting the columns of 4 by a,(j = 1,..., n) we can write equation (1) as

) Cx = d,
Where
) — .T s
(3) cij - airaj (I.’] - 13-"5 n)a
di =al'b (.l=1,..-,'n).
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Starting the Gaussian elimination for (2), using (3) we get at first

j=2
where
Si= Ilallli, g, = aib/f;, rljza{aj/fl (j=2,...,n).
Substituting x, into (2) and omitting the first equation (4) we get
X, |
) co || = a,
x'l
where the ((n—1)x (n—1)-matrix C' and deR""! are given by
' _ ala;
V-1 = a}'aj—afaia;a’ (,j=2,...,n),
(6) 1%,
alb
dV = afb—ala,—— =2,...,
1 =4 la‘alTal @ n)

The easily verified key observation is now that (6) can be written as
05”1 J=1= (a'“rlial)r(a‘_rlj 1) (i7j = 2='°°’ n)’
51)1"(0 _"1:“1) (b—g,4ay) i=2,...,n

or, putting

'aﬁl) = a.?_"lja(f” (j=2,...,m),

b = pO_g g,
where af” =4q; (j=1,..., n) and b® = b, finally in the form

cﬂ)l,j—l = (agl))Ta_(il) (isj = 2’ ey n)a

Y b, = @)D (i=2,...,n).

But (7) means that (5) has the same structure as (2). Thus evidently the k-th
elimination step (k =1,..., n) can now be described in the following way:

®) Xe=G— 2 TyX
: j=k+1
with
So=Nal™ P13, g = (") bE VL,
rg =@ etV (G=k+1,...,n),
) a? =al V—r,af~V  (j=k+1,...,n),
bW = pk—1_ g k=1,
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For the remaining linear system of equations with n—k unknowns x,  ,,..., x,
and n—k equations we would have

Xk +1
c® | = d®
x!l
with |
(10) ik =@)a G, j=k+1,...,n),

dP, = (@Th®  (i=k+1,...,n).

But as in (8) only values of (9) are required it turns out that the coefficient
matrix and the right-hand side neither in (3) nor in (10) have to be calculated
explicitly for the Gaussian elimination.

On the other hand, inspecting (9), you see the well-known modified
Gram-Schmidt orthogonalization (including the right-hand side as required)
and (8) is the corresponding backsubstitution ([1]-[3]).
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