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A new proof of a theorem of Saxer

by P. KRAJEIEWICZ (Lincoln, U.S.A.)

Abstract. A theorem of Saxer, which generalizes the Classical Schottky theorem,
gives an estimate for the modulus of a function which is regular on a disk and assumes
there the values zero and one a finite number of times. In this paper we show how
a simple proof of Saxer’s theorem can be based on a certain geometric proposition
and in the process we obtain a slightly better result.

1. Introduction. In [2], W. Saxel established the following general-
ization of Schottky’s theorem. Let A4 denote the open disk with center
at the origin and radius one. Now let f(z) be regular in 4 and suppose

that f(z) assumes the values zero and one p and ¢ times respectively in 4.
Suppose further that

f(2) = ap+a,2+ ... +a,2°+ ...

sor ze A. Then W. Saxer essentially showed that there exist positive con-
ftants 4 and B which depend only on p and ¢ such that

1+ 2|

(11) log* I(2)] < 4 T

(log*u +B)

for ze 4, where u = |ag| 4 la,| + ... +|a,].

W. Saxer established the above result by means of Schottky’s the-
orem and mathematical induction on (p+¢). Although the basic outline
of the author’s proof is clear enough, the author’s argument is techni-
cally difficult and involves the interplay of geometric and analytic con-
siderations in a complicated fashion. It is therefore of some interest to
inquire not only as to whether a simple proof of Saxer’s theorem is avail-
able but also whether a proof of Saxer’s theorem can be fashioned in
which the geometric and analytic aspects of the argument can be sep-
arated. A careful analysis of Saxer’s argument shows that the author is
really using a certain simple geometric proposition (Theorem (2.1)),
which is of some interest in itself. As we shall see this proposition which
deals with a certain geometric extremal problem gives us the best poss-
ible result in a certain sense. Once this proposition is established, Saxer’s
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theorem follows very easily from Schottky’s theorem and in the process
we obtain a slightly better result (Corollary (3.1)). In addition the use
of this geometric proposition allows us to establish some modest variants
of Saxer’s theorem with equal ease (Theorems (3.1) and (3.2)). As a
further application of Theorem (2.1) in another direction we establish a
Picard type theorem for functions polyanalytic on a disk (Theorem (4.1)).

2. A geometric proposition. If ¢ is any finite complex number and
if 0 <7 < + oo, then 4 = 4(c, r) will denote the open disk with center ¢
and radius 7. Also 0, = C(¢, r) will denote the circumference with center ¢
and radius 7.

Now let G be any non-empty open connected subset of the finite
complex plane I'. Let w and z be two arbitrary points of @. Suppose there
is some disk 4(w,r) < G and zed(w, ar) for some 0 < a < 1. We denote
this fact by writing wR,2z. This relation K, on @ is not in general symmetric.
- Now by a chain € = {z,, 2,,...,2,} in G with initial point 2, and
terminal point 2z, we mean a sequence of n > 2 points 2y, 2, ...,2, in @G
such that 2, R, 2., for some 0 <a, <1lfork=1,2,...,2—1.

For such a chain C it will be convenient to let g, = (14 a;)/(1—a;)
for ¥ =1,2,...,n—1. We now define the length L(C) = L(C;@) of
this chain C = {z,, 2,, ..., 2,} in G by the condition that

n—1
(2.1) L) = [] @+
k=1

Next let w and 2 be any two points of G. Since @ is polygonally connec-
ted there is at least one chain € in @ with initial point w and terminal
point z. We now define the distance L(w,2) = L(w, 2; @) from w to 2
in G to be the greatest lower bound of the lengths L(C) = L(C; @) of all
chains C in @ with initial point % and terminal point 2. Note that in general
that L(w,2) # L(z,w). Somewhat more generally if A and B are two
non-empty subsets of @ we define L(A4, B) = L(A, B; @) to be the least
upper bound of the quantities L(a, b), where acA and beB.

If w and z are two points of G which are not too close to the boundary
of @ we might expect the distance L(w, z) from w to z in G to be small
in some sense. This observation suggests the general problem of obtain-
ing upper bounds for the distance L(w,z) from w to z in G in terms
say of the Euclidean distances of w and 2z from the boundary of G. For
the applications that we have in mind we are only interested in a restricted
version of this problem. First we are only interested in the case when G
is a disk 4(c, R) from which a finite number of points have been deleted.
For such a G we wish to obtain upper bounds to L(w, z), where # is arbi-
trary but w is restricted to lie on some suitable circumference C(c, 7)
in @ whose choice will depend in general upon z.
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We now gather together a number of simple facts.

LEMMA (2.1). Let G, = G be two non-emply open connected subsetls
of the finite complew plane I. Then L(a,b;Gy) > L(a,b; G) for a, beG,.
Somewhat more generally if A and B are two non-empty subsets of GQ,, then
L(A,B;G) > L(A, B, G).

If C,={%,2,...,2,} and Cy = {2,,2,,4,...,%,} are two chains
in G, then C = C;C, = {2, 23, ..., %5} 15 @ chain in G. In view of equation
(2.1) it is easy to see that L(C) = L(C,)L(C,). From this observation we
obtain the following result.

LeMMA (2.2). For a,b,ceG we have that L(a,c) < L(a,bdb)L(b, ).
More generally if A, B, and C are mon-empty subsets of G, then L(A, C)
< L(4, B)L(B, 0).

We next have the following result.

LEMMA (23). Let G ={z: p—0o<|2|<po+o}, where 0<o<op.
Then for any two points w and z with [w| = |2| = o we have that L(w, z; @)
- < 4", where n i8 some positive integer such that n < 1-(2wg)/o.

Proof. For simplicity suppose that w = gandz = pe®® with0 < 0 < .
Let ¢ be the angle of a sector of the disk 4(0, ¢) which subtends a chord
of length 0/2. Thus ¢ > 0/(20). Now let 2, = w = g, 2z, = g¢'%, and in
general let z, = g¢™® for k =0,1,2,... Clearly 2,RB, 2, with o, =}
and 8, = (14+q)/(1—a) =3 for £k =0,1,2,... Now let n be the
largest positive integer such that (n—1)¢<6< . Clearly 2z, R, 2
with 0<ea, ;<% and B,_, =1+a,_)/(1—a,_,)<3. Consequently
0 ={w,2,...,2,_;,%} is a chain C in G with initial point w and terminal
point 2z for which L(C) = (1+8))(1+58y) ... A1+ B,_,) < 4" Now (n—1)gp
< wm and ¢ > o/(2¢) so that n <1+ (2mp)/o as claimed.

Somewhat more generally we have the following result.

LEMMA (2.4). Let G ={2: p—o<|2l<p+o0}, where 0<o< p.
Let X be any arc on the circumference C(0, o) with arclength op for some
0< @< 2n Then L(X, X; G) < 4™, where n 18 some positive integer with
n <14 (209)/0.

Next let A(e,r) be a disk with center ¢ and radius E and let
d,, d,, ..., d, be n> 0 arbitrary distinct finite complex numbers which
need not necessarily belong to A(c, R). Let @ = 4(¢, R)— {d,, d,, ... , 4,}.
Thus @ is the disk A4(¢, R) from which at most n points have been re-
moved. Now for zed(¢, R) we define 4(z) = 8(2, @) by the condition that

(2.2) d(2) = min{z—d,|, ..., |g—d,|, R—|z—cl|}.

It should be noted that the determination of the quantity &(z) is inde-
pendent of those points d,, d,, ...., d, which do not lie in 4(¢, R). Note
that for each z¢d4(e, R), that 8(2) gives us a measure of how close the
point z is to the points d,, d,, ..., d, and the boundary of 4(c, R).
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In the discussion to follow it will be necessary to compare the quan-
tities d4(z, @) for various deleted disks G. We have the following result.

LEMMA (2.5). Let G = A(c, R)—{dy, dy, ..., &,} and Gy = A(co, Ry) —
—{dy, dy, ..., d,}, where |coc—c|<R—R,. Let 8(z) = 8(z,G) and 6,(2)
= (2, Gy). Then 8(2) = 8,(z) for all zeAd(cy, R,).

Proof. From equation (2.2) recall that

d(2) = min{|g—d,|, ..., |z2—d,|, R—|z—c|} for zed(c, R)
and

8(2) = min{jzg—dyl, ..., |2—d,|, By—I2—¢,|]} for zed(cy, Ry).

Now |z—c|< [2— ¢l + |leg—e|l < [z— ¢l + R— R, 80 that R— [z —¢| > R,—
— |2 —¢,|. Hence 8(z) = 6,(z) for ze 4(¢,, R,) as claimed.

We are now in a position to state and prove the following fundamen-
tal geometric proposition which we regard as our key result.

THEOREM (2.1). Let @ = 4(¢, R)—{d,, dy, ..., d,}, where n >0 and
let 8(z) = 8(z, G). There exist constants A, u, and A, 'wzth 0<i<liy,d,
depending only on n with the following property. For each ze@ there is some
circumference C, = C(c, r) in Gwith Az —o| < r < |2—c¢| and 8(C,) = 8(2)/u
such that L(C,, z) < AR/[8(z).

It is important to emphasize the fact that the constants 4, x4, and A
of Theorem (2.1) depend only on » and not on G. Thus for example these
constants are independent of the placement of the points d,, d,, ..., d,.

We would also like to point out that the above estimate L(C,, z)
< AR/é(2) in Theorem (2.1) is sharp except for the actual determination
of the constant 4 as a function of ». This observation will become clear
when we indicate how Saxer’s theorem follows readily from the above
estimate. For suppose that instead:of the above estimate we had the
estimate L(C,,2)< A[R/§(2)]® for some 0 <a<1l. We would then
obtain a formulation of Saxer’s theorem, where in equation (1.1) the
factor (1+7)/(1—7) is replaced by the factor [(1+7)/(1—7)]® and of
course such a result is false.

Before embarking on a proof of Theorem (2.1) some minor comments
are in order. First the condition that 8(C,)> d(2)/u, which is not util-
ized in the applications of Theorem (2.1) to follow, is incorporated in the
statement of the above theorem only for the purpose of expediting the
proof of this theorem by mathematical induction on n > 0. Next note
that it clearly suffices to establish Theorem (2.1) only in the case when
¢ = 0. Finally it will be convenient to indicate the dependence of the
constants A, 4, and A on n by using such notation as 1 = 4,, y = u,,
and A = A4,, when such need arises.

We now proceed to establish a proof of Theorem (2.1) by mathemat-
ical induction on 7 > 0. The argument is somewhat lengthy and conse-
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quently for organizational purposes will be decomposed into several
propositions.

PROPOSITION (2.1). We have that Theorem (2.1) is true for @ = A(e, R)
or G = A(c,R)—{c} with A =%, p =1, and A = 4".

Proof. First suppose that G = 4(¢, R). It is only necessary to con-
sider the case when ¢ = 0. Note that 6(z) = 8(z,@F) = R—|z| for z¢@
= A(0, R).

There are three cases to consider. First if 2 — 0, we take the circum-
ference C, = C(0,7) with r = 0. Clearly A|2| <7 < |2| and &(C,) > 8(2)/u
and L(C,,2) < AR/6(z) with A =u =1 and 4 =2 '

Next consider the case when 0 < |z|] < R/2. In this case consider
the circumference C, = C(0,r) with r = [2|. Clearly 12| <7< |2|] and
8(C,) > 8(2)/u with A = u = 1. If we now apply Lemma (2.3) with ¢ = ¢
= r we see that L(C,,2)< 4". Hence in this case we see that L(C,, 2)
< AR/(R—|2|) = AR/d(z) with A = 4.

Finally consider the case when R/2 < 2| < R. Here we consider
the circumference C, = C(0,r) with r = R/2. Clearly 1]2| <7 < |?| and
8(C,) = 6(2)/u Wlth A= 3}and g = 1. If we now apply Lemma (2.3) with
o = o =7 we see that L(C,, 0,) < 4. Now write z = [2|¢**, —n << 7,
and set w = ¢'?R/2. Clearly L(w, 2) < B/(R— |2]). Now in view of Lemma-
(2.2) we see that L(C,,z)< L(C,,w)L(w,z)<4'R/(R—|z|). Hence in
this case we see that L(C,,2) < AR/8(2) with A = 4. This establishes
the proposition for G = A4(e¢, R). There is a similar proof for @ = 4(¢, R) —
~ {c}.

From Proposition (2.1) we see that Theorem (2.1) is true for n = 0.
Now let (p—1)=> 0 be fixed and assume the validity of Theorem (2.1)
for all n<(p—1). Let G = A(c, R)—{d,, d,, ..., d,} and suppose that
di—cl<|dy—c|<...<|d,—¢|] =d < R. If d =0, then @ = 4(¢, R) —
— {c} and the truth of Theorem (2.1) for @ follows from Proposition (2.1).
Henceforth assume that 0 < d < R. We now wish to establish the validity
of Theorem (2.1) for this G. It suffices to consider the case when ¢ = 0
so that @ = 4(0, B)—{d,, dy, ..., d,} with |d,| < |d,| <...<|dy| =d < R
and d > 0.

PROPOSITION (2.2). We have that Theorem (2.1) is true for all ze@G with
lz| < 4. Furthermore in this case we may take A = A,_,(2, p = 6p,_,, and
A =1b64,_,.

Proof. Let G, = 4(0,d)— —{dy, dgy ..., d,_;} and let 35(2) = d(2z, G,).
Of course d(z) = 6(z,G) From Lemma (2.5) we see that 8(z) > 6;(2).
for |2 < d. Now d— [2| > |[d,—2|/3 > 6(2)/3 for |2| < d/2. Hence it is not
difficult to be persuaded that 4;(2) > 6(2)/3 for |z| < d/2.

First we consider the case when z¢@ and |2| < d/2. Clearly ze@G,.
Now by the inductive hypothesis, Theorem (2.1) is true for G;. Hence
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there exist constants 0 < 4,_, <1< 4,_,, 4,_,, depending only on (p —1)
with the following property. There is some circumference C, = C(0, r)
in G; with 2,_,[2| <r < |2| and 3(C,) > 84(2)/u,_, such that L(C,, z; G;)
< 4,_,d/8;(z). From Lemma (2.1) we see that L(C,,2) = L(C,,2;@)
< 4,_,4[8;(z). Recall that 4(z) > 84(2) > 8(2)/3 for |2| < d/2. Hence
for each zeG with |2| < d/2 we have found a circumference C, = C(0, r)
in @ with A|z| <7 < |2| and 8(C,) = d4(2)/u such that L(C,, z) < AR/4(2),
where A =4, ;,u =3u,_,, and 4 =34,_,.

Next consider the case when z¢@ and d/2 < |2| < d. Now 8(2) < |z —d,|
< |2|+d so that d(z) < 3|z2| for d/2 < |2] < d. Now for each 2¢G with
d/2 < |z < d write z = |2|]6*’, —x <@ < w, and introduce the auxiliary
point ®w = [|2| —8(2)/6]e’”. Now A(z, é(2)) =G and |w—2| = d(z)/6.
Hence 4(w, 50(z)/6) < G and |w—z| = 8(2)/6. Consequently L(w,z)< 3.
Clearly |2|/2 < |w| < |2} and w G . Also it is easily seen that é;(w) > 4(2)/6.
Now by the inductive hypothesis, Theorem (2.1) is valid for G;. Hence
there exist constants 0 <4, , <1< u,_,,4,_,, depending only on
(p — 1) with the following property. There is some circumference C, = C(0, r)
in G4 with 4,_, |w| < r < |w] and 8,(C,) > 6;(w)/u,_, such that L(C,, w; G;)
< A4,_,d/63(w). From Lemma (2.1) we see that L(C,,w) = L(C,, w; Q)
< 4,_,d[8;(w). In view of Lemma (2.2) we see that L(C,, 2z) < L(C,, w) X
x L(w, 2). Hence for all zeG@ with d/2 < |2] < d we have found a circum-
ference C, = C(0,r) in G with A]z|<r<|2| and 6(C,) > 8(2)/u such-
that L(C,, 2z) < AR/6(z), where A = 1,_,/2, u = 6u,_,, and A =154,,_,.
This completes the proof of the proposition.

PrOPOSITION (2.3). Let 0 <d < 2R[3. Then Theorem (2.1) is true
Jor all ze@G for which |z| = (R+d)/2. Furthermore in this case we may take
A=pu=1and 4 =42

Proof. Let z be any point on the circumference |z| = (R +d)/2.
Consider the circumference €, = C(0,r) with r = (R+d)/2. COlearly
AMzl<r<|2] with A =1. Also 6(C,) > 6(z)/u with x =1 since 4(C,)
= §(2) = R—|2| = (R—da)/2. If now in Lemma (2.3) we take ¢ = (R +d)/2
and ¢ = (R —d)/2 we deduce that L(C,,2) < A with A = 4%, This estab-
lishes the proposition.

We now come to the key proposition in the sequence of propositions
leading to a proof of Theorem (2.1).

PROPOSITION (2.4). Leli 2R/3 <d < R. Then Theorem (2.1) is true

for all ze@ for which |z2| = (R+ d)/2. Furthermore in this case we may take
A=12,,/6, p = 6!‘12:—15 and A = 427ﬂp—1A;—1'

Proof. Recall that @ = 4(0, R)—{d,, dy, ..., d,} with |d,| < |dg| < ...
...<|d;] =d < R and d > 0. There is no loss of generality in supposing
that d, = d.

Let z be an arbitrary point on the circumference |2| = (R +d)/2.
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Write 2 = ¢®(R+4d)/2, — = <9 < = For such a point z we introduce
the auxiliary point ¢ = ¢(2) = (2d —R)e*. Also let R, = 2(R—d). We
next introduce the auxiliary disk 4, = 4(c, By) = 4(c(2), R,) with center
¢(2) and radius E,. There are now two cases to consider; namely: d¢ 4,
or ded,. Here A, denotes the closure of the open disk 4,. Note that these
two cases are not mutually exclusive.

Let us first consider the case when 2 is a point on the circumference
l2| = (R+d)/2 such that d¢d, = A(¢, R,) = A(e(2), R,). We refer the
reader to Fig. 1 for the construction that follows. Let G, = 4 (c(z), Ro) —

c(z)

2d—R/ |d R

Fig. 1

—{dy, dy, ..., d,}. Now there is a langest integer ¢ with 0 < ¢<p—1
such that d,, d,, ..., dge 4y = A(c(2), R,). Consequently G, = 4{c(z), By) —
—{dyy dgy ..., d;}. Also let 8y(w) = d(w,G,) for wedy = A(c(2), Iy).
Clearly ze@, and &,(2) = 8(2) = (R—d)/2. By the inductive hypothesis,
Theorem (2.1) is valid for G,. Hence there exist constants 0 <4, , <1< u,_,,
A,_,, depending only on (p~—1) with the following property. There is
some circumference C, = C(c, 8) in G, with 1, ,]z—¢|<s<|¢—c| and
09(Cy) = 6y(2)/p,_, sSuch that L(C,, 2; Gy) < A,_, Ry/dy(2). From Lemma (2.1)
we see that L(C,,2) = L(C,,2;G) <A, Ryd(z). Recall that |z—c|
=3(R—d)/2, Ry, = 2(R—d), and 9y(2) .= 8(2) = (R—d)/2. From Lemma
(2.5) we see that 8(C,) > 6,(C,). Thus we obtain that 31,_;(R—d)/2 <s
< 3(R—d)[2, 6(C,) > 8(2)/up_y, and L(C,,2) < 44, ;. |

Now there are two points w on the circumference C, = C(e¢, ¢) such
that |w| = |e]. Let w be one of these points. Now |w] = 2d — R whence
121/3 < R[3 < |w| <d < |2]. Now wis apoint of G with |2] < d. From Proposi-
tion (2.2) we see that there is some circumference C, = €C(0, r) in G with
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(Apaf2)lw| <r<|w| and &(C,) > 8(w)/(6u,_,) such that L(C,,w)
<154, ,R/8(w). Now [2|/3 < |w| < |2| and so (,_,/6)|2] <7 < |2|. Also
weC, and 4(C,) > 4(2)/p,_, 80 that 8(w)=> d(z)/u,_,. Hence &(C,) >
6(2)/(6up_;) and L(C,,w) < 154, A, ,R/é(z). However, weC, and
L(C,,2) <44, , so that L(w,2)< 44, ,. From Lemma (2.2) we have
that L(C,,?) < L(0,, w)L(w, 2) < 60u,_ A7 _;R[d(z). Thus for each
point z on the circumference || = (B +d)/2 such that d¢ 4, = 4(e(2), R,)
we have found a circumference C, = (C(0,7) in @ with Az <7 < [?]
and, 8(C,) > 8(z)/u such that L(C,,2) < AR/8(z), where 4 =4, ,/6,
p =6y, ), and A =60u, A% .

Nexf let us consider the case when z is a point on the circumference
|2] = (R+d)/2 such that ded,, See Fig. 2 for the construction to follow.

It is clear that these points 2z lie on a closed arc S of the circumference
|z| = (R +@)/2 which is symmetric with respect to the real axis. There
is some 0 < 6 <= so that 2z, = ¢**(R+d)/2 and 7, are the end-points
of this arc §. Note that z, is a point on the circumference |z,| = (R+ D)/2
such that d¢d, = 4(c(2), By) and ded,. The same remark also holds
for the conjugate point Z,. Now the arc S clearly has arc length 20 [(R + d)/2].
If we apply the law of cosines to the triangle with vertices at the points
0,d, and c(2,), we see that (2R —2d)® = d*+- (24 — R)?—2d(2d — R)cos 6.
Hence sin2(0/2) = 3(R —d)?/[4d4(2d — R)]. Now 0 < =sin(6/2) for 0 <0
< =. Hence we deduce that 02 < 3n?(R—d)%/[4d(2d — R)]. Thus in view
of the assumption that d > 2R/3 we find that 6 < 6(R —d)/R. Now there
is no loss of generality in assuming that 2z is a point on the arc § with
non-negative imaginary part. If we now apply Lemma (2.4) with
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¢ =(R+d)2, o =(R—d)/2, and ¢ =6(R—d)/R we deduce that
L(zy, 2) < 4**. As we have already mentioned before 2, is a point on the
circumference |2y = (R+d)/2 for which dedy = 4(c(2), By). Hence
according to the results of the first case already established there is some
circumference C, = C(0,r) in @ with 1|z < r < |%] and &(C,) = 8(z)/p
such that L(C,,2) < AR/d(%), where i =14, ,/6, u =6u,_,, and A
= 60u,_,4;_,. Of course 6(z) = 8(z) = (R—d)/2. Also from Lemma (2.2)
we have that L(C,, 2) < L(C,, z)L(7,, 2). Hence for each point z on the
circumference |2| = (R+d)/2 such that ded,, where A4, = A{c(z), R,),
we have found a circumference C, = C(0, r) in G with A1]z| <r < |2] and
8(C,) > 8(z)/u such that L(C,,2) < AR/é(z), where A = 4,,_,/6, u = 6uj_,,
and A = 60 x4*u, ,A}_,. This completes the proof of the second case.
Proposition (2.4) now {ollows.

PROPOSITION (2.5). We have that Theorem (2.1) is valid for all points
z of G which lie on the annulus d < |z2| < (R+d)/2. In this case we may
take A = A,_,/6, p = 12u3_,, and A =4¥u, A2 |

Proof. There are two cases to consider accordmg as 0(2) < 2(jz|—4a)
or d(z) > 2(|z| —d).
Consider first the case when 2z is a point on the annulus d < |2]
< (R+d)/2 for which é(z) < 2(|2| —d). Let § =2|2| —d, Clearly d < 8§ < R.
Let @G, = 4(0, 8)—{d,, d,, ..., d,} and let é,(w) = é(w, @) for we 4(0, 8).
Now |2| = (84 d)/2. From Propositions (2.3) and (2.4) we see that there
are constants A* = 1,_,/6, u* = 6u}_,, and A* =4y, A2 | depend-
ing only on p, with the following property. There is some circumference
C,=0C(0,r) in G, with A*l2| <r< [2] and &,(C,) = 4,(2)/u* such that
L(C,,#; G;) < A*8/d,(z). From Lemma (2.5) we see that d(w) > &,(w)
for all |w| < 8. Olearly, 8,(2) = [#¢|—d > 8(2)/2. Thus for each point 2
in the annulus d < [2| < (R +d)/2 such that 8(2) <2(|2|—d) we have
found a circumference C, = C(0,7) in @ with A|2| <7< |2| and 3(C,) = &(2)/u
such that L(C,, z) < AR/3(2), where 1 = 4* = 1,_,/6, u = 2u* = 124; _,,
and A = 24* =2 x4%u, 47 _, '
Next consider the case when 2z is a point of the annulus d < |2]
< (R+4a)/2 for which 6&(z) > 2(|z| —d). Write 2z = [2]€*®, —nm<¢@< T,
and set w =de¢. Now A4(2,8(2) <@ and |w—z| = |z| —d < §2)/2.
Hence it is easy to see that L(w, 2) < 12. Since weG and [w] < d we see
from Proposition (2.2) that there is some circumference C, = C(0, r)
in @ with (4,_,/2)|w| < r < |w| and 8(C,) > 8(w)/(6p,_,) such that L(C,, w)
<164, R/d(w). Clearly |w| =d < |z|. Now 2(J2]|—d) < 8(2) < |2 —d,)|
< 2| +d whence |w| = d > |2|/3. Also it is easy to see that d(w) > 8(2)/2.
Also from Lemma (2.2) we see that L(C,, z) < L(C,, w)L(w, 2) < 12L(C,, w).
Thus for each point 2z in the annulus d < 2| < (B+d)/2 with &()
> 2(jz| —d) we have found a circumference C, = C(0,r) in G with ilz
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< r < l¢] and 8(C,) > 8(2)/u such that L(C,, z) < AR/é(z), where A = A,_,/6,
u=12u, ,, and A = 3604,_,. This completes the proof of the propo-
gition.

ProPOSITION (2.6). We have that Theorem (2.1) i8 valid for all points
z of G which lie in the annulus (R+d)/2 < |2| < R. Furthermore in this
case we may take A = A,_,[12, p = 6p}_,, and A = 4%y, AL .

Proof. Let z be such that (R+d)/2 < |z] < B. Write z = |2]¢%,
—n<p<mw, and set w = ¢°(R+d)/2. From Propositions (2.3) and
(2.4) we see that there are constants A* = A,_,/6, u* = 64%_,, and A*
= 4%y, A2 _,, depending only on p, with the following property. There
is some circumference C, = C(0, r) in G with A*|w|<r < |w| and §(C,)
> d(w)/u* such that L(C,,w)< A*R/é(w). Now é(w) = (R—d)/2 and
8(2) = R—|2] so that d(w)> 4(z) and L(C,, w) <24*R/(R—d). Now
A{w, (R—d)/2) < @ and |z—w| = 2| —(R+d)/2 < (R—d)/2. Hence we
see that L(w, 2) < (B—d)/(R— [2]). From Lemma (2.2) we see that L(C,, )
< L(C,, w)L(w, 2) < 24*R/(R— |2]) = 24*R/8(2). Thus for each point
2z in the annulus (R+d)/2 < || < B we have found a circumference
C,=C(0,7r) in @ with Alz|<r<|?2|] and &(C,)> 8(2)/u such that
L(C,,2) < AR/6(z), where A =2*2 =1, ,/12, u = pu* =6u,_,, and
A =24* =2x%x4%u, ;A7 ,. This completes the proof of the prop-
osition.

In view of the foregoing propositions, we see that Theorem (2.1)
is true for @ = 4(c, R)—{d,, d,, ..., d,}. Hence by the principle of mathe-
matical induction we see that Theorem (2.1) is true for all = > 0.

A perusal of the above argument shows that we can obtain recursive
estimates for the constants 4 = 4,, 4 = u,, and A = 4, which appear
in the formulation of Theorem (2.1). We can therefore obtain explicit
bounds for 4,, #,, and A, in terms of ». First from Proposition (2.1)
we see that we may take 4, = 4, y, = 1, and 4, = 4. Next from Propo-
sitions (2.2), (2.3), (2.4), (2.5), and (2.6) we see that we may assume that
Ae < 2y /12, p,>124%_,, and A, > au, ,A2_, for n =1,2, ..., where
a = 4%, From the above recursive inequalities we see that Theorem (2.1)
is valid if we assume that A = 4,, 4 = u,,and A = A, are given by means
of the expressions 4, = 1/(12)**!, logu, = 2"logl2, and logA, = 4"loga
for n =0,1,2,..., where a = 4%,

As a simple consequence of Theorem (2.1) we mention the following
result which is perhaps of some interest in itself.

CoroLLARY (2.1). Let G = A(c, R)—{4d,,d,,...,d,}, where n>0
and let §(z) = 8(z, Q). There emist constants A, u, and B, with 0 < A<1< pu
and B > 0, depending only on n with the following property. For each z<G
there is some circumference C,= C(c,r) in G with Alz—c|<r < |z—¢| and 6(C,) -
> 8(2)/u such that for each point weC, there is some polygonal arc y in G
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joining w to 2z for which

f_d““(a?))

Proof. Let ze¢@ be given. Now assume the conclusion of Theorem (2.1).
Let weC,. If ¢c0 is given, there is some chain C = {2z, 25, ...,2,} in &
with w =2, and 2z =2, such that L(C)<e+ AR/8(z). Hence for
k=1,2,...,m—1 there are constants 7, > 0 and 0 < a;; <1 such that
A(z,, 1) < Gand 7, ,,€d(2,, a,1,). Let B, = (1+a;)/(1 —ag)fork =1,2, ...
..;m—1. Then of course

m—1
=[] a+80-
k=1

Now for ¥ =1,2,...,m—1, let y, denote the directed line segment
from z, to 2,.,. Also let y = y;+y3+ ... +¥,. Clearly y is a polygonal
arc in G joining w to 2. Now for tey, it is clear that (i) > r,— [t — 2.
If we now let 2z(¥) =2, +%(2,,—2), 0<?t<1, be the parametric
equation of y;, we see that 8(z(2)) > 7, — |24, — 2|t = (1 — ait) and ds(z)
= [2(})|di = |z, —2|dt < qpr dt for 0<t<1. Consequently

ds akdt 1
= <ln
f fl——a,,t 1-—a,,\ P

for ¥ =1,2,..., m—1. Hence we obtain that :

as R
f—3—<lnA+0(s)+ln(a—(zT).

Thus we see that Corollary (2.1) is true with B = Iln A. This establishes
the result.

3. Saxer’s theorem. In this section we will indicate how a simple
proof of Saxer’s theorem can be fashioned from the geometric proposition
formulated in Theorem (2.1).

First recall that if f(2) is regular in 4(0, 1) and does not assume the
values zero and one there, then

+l|
1—

log* |f(2)| < (1 g*1£(0)| + =),

for all ze 4(0, 1), where = is the best possible. This version of Schottky’s
theorem was established by W. K. Hayman in [1] by means of the modu-

lar function and the hyperbolic metric.
We first have the following result.
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THEOREM (3.1). Let f(2) be meromorphic in 4(0, 1) and suppose that f(2)
assumes the values zero, one, and infinity at most n distinct points d,, d,, ..., d,
of 4(0,1). Let G = A4(0,1)—{d,, ds,...,d,} and 6(z) = d(2,G). Lei
p > 0 and suppose that for each circumference C, = C(0,r) in G there is
at lease one point zeQ, for which |f(2)| < u. Then there is some constant A
depending only on n such that

log* [f(2)l < a_éf (log* u+ =)
for all ze A(0, 1) such that f(2) # 0,1, oco.

Proof. Let 2¢4(0,1) be a fixed point for which f(z) # 0,1, oo.
Thus 2¢@ = 4(0,1)—{d,, d,, ..., d,}. According to Theorem (2.1) there
is some constant 4 depending only on » with the following property.
There js some circumference C, = C(0, ) in @ for which L(C,, z) < 4/4(2).
There is some weC, for which [f(w)] < u. Now L(w, 2) < 4/3(2). Hence
if £ > 0 is given we can find a chain C = {2, 23, ..., 2y} I G With 2, = w
and 2,,, =z such that L(C) <e+ A/3(2). Hence for ¥ =1,2,...,m
there exist constants 7, > 0 and 0 < g, <1 such that 4(z,r,) <@ and
Zep1€ (2, apry). Let B, = (14a,)/(1—a,) for £ =1,2,...,m. Conse-
quently,

m
A
L(0) = —_—
(©) k[_l](uﬂk) <ot
Now for each k = 1,2, ..., m we see that f(z) is regular in A(z, r;)
and does not assume the values zero and one there. Also 2, e 4(2, a;7).
Hence by Schottky’s theorem we deduce that

log* |f(2r.41)] < Br(log* £ (2) +m)

for k =1,2,...,m. Now taking into account the fact that |f(2)] < u
and 2z,,, =2, we deduce from the foregoing recursive inequalities that

log* If(2)] < (BuBa---Bm)10B* 5+ Y (BeBrs- - ) < L(C)(log* -+ ).

k=1
Consequently,

A
log* |f(z)| < [5 + m‘][loy’y + =]

Since ¢ > 0 is arbitrary, the result follows.
On the basis of the above result we are easily led to the following
variant of Saxer’s theorem. |

COROLLARY (3.1). Let f(z) be regular in A(0,1). Assume that f(z)
assumes the value zero at most p times in A(0, 1), counting multiplicities.
Assume further that f(z) assumes the values zero and one at most n distinct



Proof of a theorem of Saxer 305

points of A(0,1). Finally suppose that
f(z) = ay+ a2+ ... +a,2°+ ...
for 2¢ 4(0,1). Then there is a constant A depending only on n such that

log* 1f(2) < 4 T
1—12|
for 2e4(0,1), where u = lagl+la,|+ ... +|a,.

Proof. Let P(2) =ay+a,24 ... +a,2” for 2z¢4(0,1). Clearly,
[P(2)| < p for all ze 4(0, 1). Suppose, if possible, that there is some circum-
ference C, =C(0,r) in 4(0,1) on which |f(2)]> u. Thus r >0 and
|f(2)] > |P(2)] for all zeC,, Hence by Rouche’s theorem we deduce that
f(2) and f(2)—P(2) have the same number of zeros in 4(0,r). This is
impossible. Hence for each circumference C, = C(0,7) in 4(0,1) there
is at least one point z¢C, for which |f(2)| < u

Next let d,,d,,...,d, be the n distinct points of 4(0,1) at which
the function f(2) assumes the values zero or one. Let G = 4(0,1)—
—{dy, dqgy ..., d,} and 6(z) = d(z, G).

Now let ze4(0, 1) be fixed and consider the annulus {w: |2| < |w|
< (1+2))/2}. Let ¢, = |2|+k[1—|2]}/[2(n+1)] for k = 0,1, ..., (n+1).
There is some k¥ = 0,1, ..., n such that f(w) # 0,1 for o, < |w| < ay,;.
Let o = (03,4 0,,,)/2. Clearly &(w)>[1—|(2])/[4(n+1)] for all weC,
= (0, o).

Hence from Theorem (3.1) we see that

4(n+1)4
log* | f(w)] < S 1@
for all weC,. Since |2| < o, the result follows.

As a further application of Theorem (2.1) we offer the following
result.

THEOREM (3.2). Let f(z) and g(z) be reqular in A(0,1) and suppose
that f(z) has at most p zeros in A(0,1), counting multiplicities. Suppose
Sfurther that the total number of distinct zeros of the functions f(2), f(2) —g(2),
and g(z) in A4(0,1) is at most n. Finally let the Laurent series ewpanswn
of f(2)/g(z) with center at the origin be

f(2) -

. =A_p2 "+ ... Fa,2%+ ...,

and let pu = |a_pnl+ ... +1a,l. Then there exist constamis 0 <A<1< A
depending only on m such that

A
logM(T,f) log M(E 1g)+‘ﬂ [10g+ (A’"I.;’") +TC]7
Jor0o<r<R< 1.

(log* u+ )

(lOg p+m),
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Proof. There are n distinct points d,,d,,...,d, of 4(0,1) such
that the funections f(z), f(2) — g(2), and g(2) never vanish on G = 4(0, 1) —
—{d,, dy, ..., d,;}. Let 8(z) = 8(z,@). Consequently f(z)/g(z) #0,1, oo
in . If we let P(2) =a_,2"™+ ... +a,2” we see that for every circum-
ference C, = C(0, r) in @ there is at least one point z¢C, for which |f(2)/
|g(2)] < |P(2)|. But |P(2)| < u/|z|™ for 0 < |2| < 1. Hence for every circum-
ference C, = C(0,7) in G we see that there is at least one point zeC,
for which |f(2)/g(z)| < u/|2|™. Then by reasoning similar to the proof of
Theorem (3.1) we see that there are constants 0 < 1< 1< 4 depending

only on n such that
;.ﬂl m ' ﬂ]
fOI' &ll zGG = A(O’l)_{dl, dg,...,dn}-
Now let 0<r<R<1 be fixed. There is some (R+7r}2<oc

< (3R +1r)/4 such that for the circumference C, = C(0, 6) we have that
d(C,) = [E—7]/[8(n+1)]. Consequently,

log|f(2)] < loglg(2)] + (nttﬁ[log+(-mﬂam)+n]

log £ (2)] < log lg(2)| + —[

R A

or |z2| = a. The result now follows.

4. Functions polyanalytic oa a disk. In this section we offer an appli-
cation of Theorem (2.1) in another direction by establishing a Picard
type theorem for functions polyanalytic on a disk.

For purposes of completeness we give the following definitions.
Le G be a non-empty open connected subset of the finite complex plane I
A function f: @—1TI' is said to be polyanalytic on G or n-analytic on G if
and only if there exist (n4-1) > 1 funections f,, f;, ..., f, analytic on @
such that

(4.1) fle) = Zz"fk

k=0
v

for all zeG, where Z denotes the complex conjugate of z. It is not difficult
to be persuaded that this representation of f on @ is unique.

Now let f be polyanalytic on 4 = 4(0,1). Then for 0 <r<1 we
define M (r, f) to be the maximum of |f(z)| for |2| = r. We shall say that f
is admissible on A if and only if

limsup(1l —r)log M (r, f) = +oo.
r—1

Again if f is polyanalytic on 4 = 4(0,1) and if a is any finite com-
plex number, then a is said to be an exceptional value for f on A if and
only if there is some 0 < r <1 such that f(z) # a for all r < |2| < 1.
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If f is polyanalytic on 4 = A(0, 1) and is represented on 4 by means

of (4.1), then for 0 < o < 1 it will be convenient to introduce the auxili-
ary function f(z, ¢) defined on 4 by the condition that

fz,0) = Z‘ ™" fy(2)

k=0

Jor zeA. Note that for 0 < ¢ <1 that f(z, ¢) is regular on 4 and that
f(2, o) = 2"f(2) for le| = o.

Next if f is a finite complex valued function which is continuous
and never zero on some circumference C(0, o) we define d,argf to be
1/(2=) times the change in the argument of f around the positively orien-
ted circumference C(0, p).

We now have the following result.

THEOREM (4.1). Let f be polyanalytic on A = A(0,1) and admit the
evceptional values zero and one on A. Then f 18 not admissible on A.

Proof. Let f be represented on 4 by means of equation (4.1). There .
is some 0 <7y, <1 so that f(z) # 0,1 for r, < |2| < 1. Hence there are
integers s and ¢ so that Ad,argf = s and Ad,arg(f—1) =1 for r,<p < 1.
Consequently A,argf(z, ¢) =n-+s and AJ,arg[f(z, ¢)—2"] =n+1 for
ro<eo<1l Let p =max{n+s,n+it,n} and m =3p. Thus if ry,< o<1
we see that f(ez, ¢) is regular in 4 and has at most p zeros there. Also
for r, < p <1 we see that the total number of distinct zeros of the func-
tions f(e2, o), f(0?, 0) —(02)", and (p2)" in 4 is at most m.

Finally let

f(@zy 9) _ a—n(e) )
r - = + ... Fa,(0)2P+ ...,

be the Laurent series expansion of f(pz, p)/(¢2)" with center zero. Now
set wu(g) = la_,(0)|+ ... +lay(0)l. It is easy to see that there is some
positive constant u independent of ¢ such that u(g) < g for r, < o < 1.

From Theorem (3.1) we see that there are constants 0 < A<<1< A4
depending only on m such that log|f(ez, )| < A [log* (u/A") +=]/(1 — |2])
for 0 < |2| <1 and 7, < ¢ < 1. Hence there is some positive constant B
independent of p such that

lo 2 <
glf(2, o) < _w
for 0<|2z|<p and ro<po<l1.
We now wish to show by virtue of the above estimate that the func-
tions fo, f1, ..., fa are not admissible on A. To this end let 7, <r <1 be
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fixed. Now let gy, 01, ..., 0, be (n+1) distinct real numbers subject for
the moment only to the restriction that r< g, <@g <...<g¢,<1.
Hence

f(z, @) = D @*2" *fi(x) (v =0,1,...,m).
Km0

The above equations can be regarded as a system of (»+1) linear equa-
tions in the (n+1) unknown funections 2" *f.(2) (¥ =0,1,...,n). The
determinant of the coefficients of these unknowns is the Alternant D
= II(gj — ¢7), where i,j =0,1,...,n and ¢ <j. From Cramer’s rule
we see that there is some positive constant K depending only on % such
that

K n
FEREI< T D e el (k=0,1,.,m).

Consequently

log M(r,f;) < O(1) +0 (log%) Flog* =+ ' log* M(r, f(z, ep)

Py

for £k =0,1,...,n. Hence

1
(9.—7')

1 1 =
log M(r, f,) < 0(1)4+0 (log 7) +10g+3 +B Z
re=(

for k. =0,1,...,n. If we now suppose that
e =7r+(»+1)(1—-7)/[2(n+1)] for»=0,1,...,n,

it follows that

1 1
log M(r, f,,) < 0(1) +0(log7)+0 (1_,)

for ry<r<1 and ¥ =0,1,...,n. We have therefore shown that the
functions f,, f1, ..., f, are not admissible on 4.
However, from equation (4.1) one readily sees that

log M (r, f) < ) log* M(r, f) +log(n+1)

k=0

for 0 <7 < 1. Hence f is not admissible on 4 as claimed.
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