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Exactness of expanding mappings

by JoLanTta Socata (Katowice)

Abstract. A new sufficient condition for exactness of piecewise expanding mappings on the
d-dimensional cube [0, 1]¢ is proved. It generalizes the results of [6] concerning the piecewise
expanding mappings on the unit interval.

1. Introduction. The purpose of this paper is to establish a sufficient
condition for the exactness of piecewise expanding mappings on the d-
dimensional cube. In the one-dimensional case, this problem is almost com-
pletely solved. The solution follows from the results of Rényi [10]. Rochlin
[11], Lasota and Yorke [7], and Lasota and Mackey [6]. In the d-
dimensional case, this problem has been investigated in [1], [S] and [13]. In
particular, K. Krzyzewski and W. Szlenk proved the exactness for expanding
mappings of compact manifolds under assumption T(4) = A. G. Pianigiani
and J. A. Yorke obtained a somewhat analogous result for expanding
mappings in the case 4 = T(A). In the present paper we assume T(A4) < A.

We shall study our problem from a statistical point of view as trans-
formations of probability densities. This leads immediately to the idea of
considering the properties of the corresponding Frobenius- Perron operators.
The proof of our theorem is based on idea due to [6]. Section 2 of the paper
contains some preliminary notation. The main result is proved in Section 3.

2. Preliminaries. Let (X, 2, m) be a g-finite measure space and let S: X
— X be a given transformation. In what follows, we shall assume that § is
doubly measurable which means that S(A)e 2 and S "'(4)eX for AcX. We
shall also assume that S is non-singular, i.e., m(A4) = 0 implies m(S~'(4)) = 0.
We shall deal with the space L' = L'(X, Z, m) and the norm ||-|| =1|"|i,,.
By D = D(X, X, m) we shall denote the set of all (normalized) densities on X,
that is,

D= felL': >0 and ||f] =1}.

For any density g we shall denote by m, the measure

m,(A) = [gdm for AeX.
A
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An important role in our considerations is played by the Frobenius-
Pcrron operator. For a given S, we define the Frobenius- Perron operator P
corresponding to S by

(1 tPfdm= | fdm for AeX and fel'.

A s

From (1) 1t can be seen that P is linear and preserves the integral and is
contractive in L' {that . [Pf] <|/1D.

To define the exiciness of the system (S, p) assume that (X, X, @) is a
rormalized measure space and that S: X — X 1S a measure preserving
transformation. If

lim u(S"(A4)) = 1
n
for every A=X with m(4) > 0, then the system (S, y) 1s called exact.
We shall use the following sufficient condition for exactness (see [8]).

Tueorem 1. Let (X. 2. m) be a o-finite meusure space and let S: X - X
he doubly measurable and non-singular. Assume that there exists he L', h = 0,
[|hl] > 0. such :hat

(2) liml(h=P"[)*|| =0 for feD.

"
Then there is a unique density g such that the system (S, m) is exact.

In (2. - ° denotes max (0. z). A non-negative function he L' satislying (2)
will be called o lower bound function for P.
We shall use some standard notions of the theory of differential inequal-
iies. A function f: (a, b) =R is called left lower semicontinuous if
liminf f(r—=2) = f(1) for re(a. b).
a>0e 0
For any function f: (a, ) = R we may define its right lower derivative by
setting
I f L Jlu+e=fr
{ +Z_(,’ — ]lm ]nf j!,g_‘f).._‘f_(f) for (e(a1 h)
dit >0 -0 &
It is well known (see [12]) that for every left lower semicontinuous function
f: (a, by — R the inequality

d '1/[“—) < Kf(t) for 1e(ua.b)
(

implics

(3) F)< ()X for 1 €[s. h).
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Now we are going to deline the expandins_ maps on R We say that a
matrin M s z-expansive ibinC Mo o =1'> /7 Let $¢ X =R’ X < R' be
a C'-function and let DS(x) denote the debun matrix for . We call the
mapping S z-¢expansive if DS(x) 1s a z-expansive matrix for all xe X.

3. The main result. Denote by m the Lebesgue measure on the unit cube

3
X = [0, 1]%. We shall write x =(x,, ..., x,) for xe X. Let X = {J X,. wherc
i=1

X;. i=1,....k are closed cubes which can be written in the form

Xi=' xeX:d, <\ <bjfor j=1.....d.

Assume that m(X;» X;) =0 for i = j. Consider a scquence of mappings
St X, — X, i=1, ,l\, which satisfy the conditions:

(i) S is a Cl-diffeomorphism onto its imagc:

(ii) ¢Tj/x; 20, det DT > 0 for j, I=1. ..., d. wheie T'=(8')" " and T
=(T{,.... T} ‘

(it1) there exists ~ > 1 such that §' is s-expansive:

(iv) if xe X, and x; # dj for a given 1 <j <d. then $;(v) # 0;

(v) if xeY,=58(X;) and y; < x; for j=1,...,d, then yeY.

We define the mapping §: X — X by the Londlllon

(vi) S(x) = S'(v) for xeint X,, i=1,..., k.

ThroreM 2. If S is given by formula (vi) and S' satisfy conditions (1) (v).
then there exists a unique density ¢ such thar the system (S, m,) is exaci.

Proof. Let Q be the set of all C!-functions ¢: 4 — X such that
dg/dit 20 for j=1,...,d and 1€4,

where 4 is a compact interval which depends in general upon ¢. Now let Dy,
denote the subset of D = D(X, 2, m) consisting of all functions f satisfying
for every ¢eQ the following two conditions:

(Cl)  The function fogq is left lower semicontinuous:

d. .f"Oq Jq

) .
(€2) dt

l/oq

where || stands for the norm in RY and the constant K, depends in general
on f but not on ¢. The proof will be given in two steps. First, we shall show
that P"feD, for feD, and that there exists a constant K such that
KP,,f < K for every fe D, and for n = n(f). Then in Step Il we shall prove
the existence of a constant » such that for every feD,

(4) [P fdm<1/2, B, = xeX:xj<vr for some j!
Br
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for sufficiently large n. This allows to construct a non-trivial (different [rom
zero) lower bound function for P.

Step I. Let feD, and ¢geQ. A simple computation shows that the
operator P can be written in the form

Kk
Pf(x) = Y 1y (x)f 0T (x)det DT*(x).

i=1

Hence

k
(5) Pfog(n =) 1y.0q4()foT oq(t)det DT oq(r) for t€4.

i=1
From conditions (v) and (i) it follows that

ly,04 =14,, and TiO(ll[o.h,-J €Q,

where b, = sup !t: ¢q(t)e Y;). The function Pf ogq as calculated from equation
(5) is left lower semicontinuous. Differentiation of (5) gives

k I 'OTiO . k 1 d [DTiO .
0g LT e pTiog ¢ 3 1,04 MO D ooy,
i=1

By conditions (C2) and (iii) we obtain

dT oy

‘oT'oq < BK
dt JoT oq <K,

T T XY I

dqlfo T o
dr| €
where f = 1/A. Since Y, are compact, there exists a constant L such that

cdet DT' .
O < LdetDT' fori=1,.. kij=1, ..d

-
(XJ-

$0, 4 a consequence,

< dLdetDT oq

d(det DT oq) 4 dg;
f dr

< LdetDT'
di etDToq ),

j=

dql
Thus, finally

d, Pfoq dq(
AL :

and PfeD, with a constant Kp; < K, +dL. An induction argument shows
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that P" feD, and
KPISB"waLdL/(I—B)SK

for n sufficiently large and K = 1+dL/(1— fi).
Before passing to the Step Il we shall proof three simple lemmas.

Lemma 1. Let feDy and K; <K. If x;<}y; for j=1,...,d, then
Sy < Mj'(r) where M = e~

Prool. Define ¢: I — X by the formula q(t) = ty+(l —t)x. Evidently
geQ and |dg/dt] <d. By the definition of D,

d, fog/dt < Kdf oq

and the function foq is left lower semicontinuous. From (3) it follows

S () < Mf(x).

LeEMMA 2. Assume that feD, and K, < K. Let ¢, r be positive real
numbers such that c+r < 1. Then

| fdm <rM/c  where C; = (xeX: c < x;<c+r].
C;
i

Proofl. Let B; = \xe X: x; <c] and let
FJ(X)Z(xl,...,Xj_.l,c+Xjr/(', Xj+1,...,xd)

for xe B;. Then det DF; = r/c, and consequently, from Lemma 1 it follows
that

| fdm — [foF |det DF ;f dm < (r/c) ‘ Mfdm < rM/c.
Cj Bj Bj

LEMMA 3. Let j (1 <j < d) be a given number and let r be a positive real
number. Then

T(K,NnY) CK},, Jor i=1,..., k,
where

K,={xeX: x;<r}, Kj = \xeX;: x;<d+pr}.

Proof. First we shall show that if x, yeY, for a certain i, then
[T'x—T'y| < Blx—y|. Define q: I > X by the formula q(t) = ty+(1—1)x.
Using condition (iii) we may write

IT' x—T'y| < | dt Blx—yl.

For a given point xeT'K, and for y=Sx we have y;<r. Set z
= (V1> o> Vi1 0, ¥js 1. ..o, ¥a). From (iv) and (v) it follows that ze Y, and
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T; z = aj. Thus, since
x;—d) < |x—T'2) < Bly—z| < fr,
we have xeKj,.
"Step II. Define B, as in formula (4). For a given j (1 <j <d), set

I=1li:aj=0}, J=1li:d;j#0 and b=minld}: ieJ}.

Let K,, Kj, be as in Lemma 3. If feD,, then there exists N such that

Kpn, <K for n>N. Since m(X;nX;)=0 for i#j, it follows that
m(Kj, N K},) =0 for i # j. From Lemma 3 and Lemma 2 we have

k k
[P¥*'fdm=3 [ P'fdm< ¥ [ Pfdm

K iZITE(K) i=1 i
r r Kpr

<Y [ PVfdm+y | PV fdm< | PV fdm+kBrM/b.
iel iel Kg,
Kgr Kpr
Again, using a simple induction argument it follows that
[P¥*"fdm < | PN fdm+kBprM/b(1—p) < 1/2d
K K
r phr

and consequently

{ PN fdm < 172
B,

for r <b(1—pB)/2dkBM and n sufficiently large.
We are going to show that h =(1/2M)1; with

G=\xeX: x;<rforevery j=1,...,d}
is a lower bound function for P. Let fe D, and

K., <K and P fdm<1/2 for n>N.
B"

From Lemma 1 for xe G we have

12< | P'fdm< [ MP"f(x)dm < MP" f(x)
X-B X-B

r r

and P" f(x) > 1/2M. Since the set D, is dense in D, this completes the proof.

Remark. The existence of absolutely continuous invariant measure for
a certain class of piecewise differentiable mappings on the d-dimensional cube
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has been proved in [2}-[4]. The transformation

(4x—4xy, 4y) for 0 < x, y < 1/4,

S(x, y) = {(4)(, 4y)(mod 1) elsewhere,

on the unit square I? satisfies the assumptions of our Theorem 2 and it is
not of the form considered in the mentioned papers.
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