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In paper [1] there were proved some theorems on uniqueness of
regular and weak solutions of the Cauchy problem for a single linear
parabolic equation with unbounded coefficients under the assumption
that the solutions satisfy a certain growth condition determined by the
convergence of an improper integral.

Section 1 of this paper deals with a generalization of those results,
which concern the regular solutions (see Theorems 1 and 2 of [1] and also
Appendix to [2]), to a system of semilinear equations. We also improve
the result of [1] by requiring less restrictive assumptions concerning the
growth of the coefficients and the solutions (Theorems 2 and 3).

In section 2 we extend the results of section 1 to solutions of the
Dirichlet problem in unbounded regions for elliptic equations. In substance,
the obtained theorems constitute generalizations of Krzyzanski’s results
[3] in two directions. Firstly, the pointwise growth condition imposed on
the solution in reference [3] is replaced here by a weaker integral growth
condition, and, secondly, one linear equation is substituted by a system
of semilinear equations. Moreover ,the coefficients are allowed to grow
to infinity in wvarious ways, whereas in [3] they were assumed to be
bounded.

1. Let § = E"x(0, T] and S = E" x[0, T], where E" is a Euclidean
n-space of the variables ¢ = (z,, ..., #,) and T > 0 is fixed. In this section,
we consider the system

n n
(1) wi= Y (@@, )ule,— D (@, 'l +f (2,1, 4, ..., u™),
7,k=1 i=1
t=1,...,m.
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We make the following assumptions: .
(A;) The coefficients a,‘:k, b; and their derivatives (a}:k)zj, (a}k)zjxk, (b;:)z,.
are defined and measurable in § and bounded in every cylinder

Sk = (|#| < R)x [0, T], where |z| = (3 2%)"2. Also aj = aj;.
=1

(A;) The quadratic forms

n
D di(@, b (i =1,...,m)
7,k=1
are positive semidefinite in S.
(A;) The functions f' are defined for (z, t)eS and arbitrary «?, ..., u™,
and satisfy the Lipschitz condition

[fi(-'”y tyu'y ..., “m)_fi(w7 L, @y .., @m)]sgn(ui_'ﬁi)
m .
< Y@= (i=1,...,m),

where ci(x,t) >0 for s +# i, (#,t)eS and ¢ = ¢f. Moreover, ¢; are meas-
urable in S and bounded in any finite cylinder Sz. The symbol sgnx
denotes +1 for x > 0 and —1 for # < 0.

By a solution of (1) we mean a system of functions u(z, t) = {u'(z, t),
..,uw"(x,t)} continuous in S, having the derivatives appearing in (1)
which are measurable in S, bounded in every cylinder Sy, and satisfy
system (1) in S.

Now we prove the following uniqueness theorem for the solutions
of the Cauchy problem for system (1):

THEOREM 1. Let assumptions (A,)-(A;) be satisfied.

Suppose there exists a wvector-valued function ®(z,1) = {P'(x,1), ...
veey @™ (2, 1)} of class O*(S) such that @' (z,t) >0 in S and

(2) LM®= D ap®i,+ D bid+ YA +8 <0 (i=1,...,m)
j=1 8=1

I, k=1

almost everywhere in 8. If u, = {u}) and wu, = (uly, i =1,...,m, are
two solutions of system (1) satisfying the growth condition

3) [ luil[max } |a’;:k¢ik|+¢i(m_a”§|a;k|+m%X]b;l] dzdt < oo
S 7 k 7, 7

(t=1,...,m; 1 =1,2)
and u(x,0) = ul(z,0), t=1,...,m, for zeE", then ul(w, 1) = ui(z, 1),
i =1,...,m, for (z,1)eS.
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Proof. We define o' =u;i—u;, w' = [(«)2+e]", >0, u=
{uly ..., "}, w= {w,...,w"}. The functions u' satisfy the relations
(4)

n

n
Z (@ )z Z(b"ui)z +f (@)t Uyyeeey u)—f (@) by U3y ..., uy)
7k=1 j=1

(i=1,.., m)

and 'u’:(x, 0) = 0 for x¢F . Now we multiply the ¢-th relation of (4) by
w'/w' (i =1,...,m)and make use of assumptions (A,) and (A;) to obtain

n n

6)  wi< D (@hto)gm— ) Gw)—
j, k=1 j=1
oy 2 . £ u e
- [Z (a’;:k):l:jlk_ (b;)I]] —’Z,Z)T + wi Z 0;|u9| .
7 k=1 i=1 s=1

T

The assumption ¢; > 0, 8 # ¢, implies the inequality

I l m m

wi| X : e
: E cs || < E W' — —¢;.
w 8=1 8=1 Wi

Hence by (5) we get

n

n
. . . s £
7,k=1 1_1

where
n

n
i )
A = Z a]k Tz 2 "|’ci-

7.,’(' 1 7=l

Let v(x, t) = {vi(w, #)},i=1,...,m, where v'(x, t) are non-negative
functions of class C2(8) with compact support as functions of # in E".
We make use of the identities

(7) 'v"'(Li 2 w")

=wi(L*iv—Zcﬁvs)+§'[ Z B ), — W' 2“7""’% bjv'w ']xi—('v"w")t

8=1 7 = k=1

N\

(i=1,...,m).

Summing identities (7) over ¢ and taking into account inequalities (6)

and the relation

m m

civ'w® = Z civ*w'

1 ‘i,8=l

i
8=

T
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we get
m m
i € i i
(8) E'Av;;ngL v+
i=1 i=1

+Z 2 Z(a,k'w — 2"’1"”% bjv w] — (ZM: Q,iwi)t.

t=1 =

Let (£,7) be an arbitrary point of 8. We show that w'(&,7) =0
(¢=1,...,m). Denote by 8, the strip E" X[0, 7].
Integrating both sides of (8) over 8, yields

ffZAivi—%dwdt
s; =1 w
<ff w' L¥vdedt— f ('viwi)l,ﬂdw—I—J~ (V' w')|sodez.

Passing to the limit in (9) as ¢ — 0 we obtain, in view of u‘(z, 0) = 0,

(10) fzm‘w'(w, )| v (2, 7)do <ff2m|ui|L*i'vdwdt.
ET =1 8, i=1

Now set v° =y ( )@i where y%(2) with R > 1 is a function of class
C*(E™) such that a Br) =1 for |#] < R—1, y®(z) =0 for |2| > R,

0 <y®(x) <1, and Z‘ |7zz,,|+2 |yz| is bounded in E" by a constant
independent of E. We have

(11)  L*o = y®L*04-2 2 Ayl Ok + O D aluyle, + D bIVE).
i,k=1 i,k=1 f=1
Combining (2), (10) and (11) we find
m
12) | Zm“ly%"ltﬂdw

B i=
Za'jk}’g T P ( vajk}’mmk‘l'zbj)’z)
ig=

By (3), the right-hand side of (12) approaches zero as R — oo,

whence
m
[ D w9 |_.dz <0
M i=1

dxdt.

St i=1
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-

This implies that u‘(z,v) =0 and, in particular, u’(£,7) =0
(#=1,...,m), which was to be proved.
The following theorem is a consequence of theorem 1:

THEOREM 2. We preserve assumptions (A,)- (As) Suppose that the
coefficients ay. and b of (1) and the functions ci satisfy the growth
conditions

|afel < M, (|l*+ 1)@ [In (|02 4 1)+ 117, [Bj] < Mo(|2(2+1)"",
(13)

m
Zc§< My(l2*+ 1) [n(je|2+1)+1F, j, k=1,...,n; i=1,...,m,

8=

-

almost everywhere in S for some M,, M,, My > 0. The constant A is sup-
posed to be nmon-negative, while u may be any real number if 4 >0, and
p=1if A=0. Let u, = {ui} and uy = {ui}, i =1,...,m, be two solu-
tions of (1). We assume that there exists a constant ay > 0 such that

(14) [ [ |uilexp{— ag(jzl*+ 1) [In(|2|*+ 1)+ 1]} dedt < oo
S

fori=1,....m and 1 =1,2.

If, moreover, ui(z, 0) = uj(2,0), ¢ =1,...,m, for xeE", then
ui(w,t) = ui(x,t), i =1,...,m, for (z,1t)el.

Proof. At first the proof is.carried out for a strip S, = E" x(0, §],
where 6 is a sufficiently small constant, and then it is extended step by
step in a standard manner. To deduce the theorem from theorem 1 we
set

@' = exp{—(a+pt)(|2|*+ 1) [In(|z]*+1)+1¥} (i =1,...,m).

One can show that the constants a > ay, 8 = f(a) >0 and é = d(a)
> 0 can be determined in such a way that assumption (2) of Theorem 1
is satisfied in 8,. Then it can be verified that (14) implies (3). Thus
Theorem 2 follows from Theorem 1. We omit the easy (but lengthy)
computations. The details do not differ much from those in the proof
of Theorem 1 of [1].

Another version of a corollary from Theorem 1 is the following

THEOREM 3. Let (A,)-(As) be satisfied. We assume that

@il < My(|2)24 1) [In |2+ 1)+ 177,
(15) b5 < My(|2]24 1) [In(|e|*+1)+1],

m
Zc:< M,[In(jz*+1)+11  (j,k=1,...,n;4 =1,...,m)
s=1
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almost everywhere in S for some My, My, My >0 and 1 < u < 2. Consider
two solutions w, = {ui}, u, = {us} of system (1) such that

(16) [ 1uilexp{— a,[In(|&[>+ 1)+ 1}}dedt < oo
S

(i=1,..,m;1=1,2)

for some ay > 0. ' ‘ _
Under these assumptions, if ui(x,0) = uy(x,0) in E", then u;(x,t)
=ui(w,t) in 8 (i =1,...,m).
For the proof, we set in Theorem 1

@' = exp{— (a+pt)[In(ja*+1)+11} (i =1,...,m)

and select constants a > ay, f = f(a) >0 and 6 = d(a) >0 so that
assumption (2) is satisfied in S;. Then we show that (16) implies (3).
We omit the computational details.

2. We shall say that a region of E" is normal with respect to a coordinate
plane x; = 0 if it can be described by the inequalities

P(Try ey By, Bigryeney Tn) S B < P(Bry ey Bimy, Big1yoeey Tn),

where ¢ and y are continuous functions on a closed domain of the plane
r;, = 0.

Now let D be an open region of the n-space having the following
property:

(P) There exists an increasing sequence {D,}, » = 1,2, ..., of open
bounded subregions of D such that the closure D, of any D, can be repre-
sented as the union of a finite number of closed regions with disjoint
interiors and normal with respect to every plane ; =0 (¢ =1, ..., n).
Moreover, for any ball K = {z: |2| < R} (of radius R large enough)
there is a » such that D ~ Ky < D,.

Without loss of generality it may be assumed that the projections
of every two members of the decomposition of D, on any plane z; = 0
(1 <7 < n) either coincide or their intersection contains at most some
boundary points.

For the sake of simplicity of notations we shall assume hereafter
that each of the regions D, is normal with respect to every coordinate
plane.

In this section we consider the system

11 D [ar@) 6y, — ) 0@ ']+ f (2, @, ..., u™) =0,
j k=1 j=1

t=1,...,m; T = (Tyy ...y y).
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The following assumptions are introduced:

(A;) The functions ay (ai = ai;), b:, (a,,k),, , (@) - (b} )x; are defined
and measurable in D and bounded in every bounded subset of D.

(A;) The forms
2 afk(w)hjhk (t=1,...,m)

7,k=1
are positive semidefinite in D.
(A;) The functions f* are defined for x<D and arbitrary u!,...,u",
and

m

[fi(@, @y oony w™)—f (@, @ ..., @) Isgn (4’ — T z (@) |u"— 2

(¢=1,...,m),

where cﬁ(w)) 0 for s # 1, meﬁ, and ci: ¢;. Furthermore, ci are meas-
urable in D and bounded in every bounded subset of D. The system of
functions u(z) = {u'(x), ..., w" (x)} will be said to be a solution of (17)
if w'(x), 4 =1,..., m, are continuous in D and their derivatives occur-
ring in (17) are measurable in D, bounded in every bounded subset of D,
and satisfy (17) in D.

A counterpart of Theorem 1 for the elliptic problem is the following

THEOREM 4. Let D be a domain having property (P) and let assump-
tions (A;)-(A;) be satisfied. We. assume that there exists a vector-valued

function ®(z) = {@(x), ..., D" ()} of class C2(D) such that &' > 0 in D and
(18) LMD = 2 41 (@) Pl + sz 2) &%, + ch(w)abs <0
7, k=1
(t=1,...,m)

almost everywhere in D. Consider solutions u, = {ui(x)} and uy = {ug(w)}
of (17) which satisfy the condition

(19) f tH [m?,xz |aj DL, | + ¢i(mi’x|“§k| + m@x]bﬂ)] de < oo
‘ D 7 k 2, I

t=1,...,m; 1 =1,2).
Under these asswmptions, if ul(w) = uz(w), t=1,...,m, on the
boundary of D, then wi(z) = ui(2), i = 1, sy My m D.
Proof. Let us assume that «'= u} ui, w'=[(u")2+e]"?, >0,
where u = {u!,.. ,um} and w = {w!, ..., w"}. We have the relations

(20) 2 (@Yo, — Z(b'u’)+f By Uty oy UM —fH (@, Uy oy 07 = 0

ik 1
and %' = 0 on the boundary éD of D (i =1,...,m).
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We multiply the i-th relation of (20) by w'jw’ (i =1,...,m). In
view of assumptions (A;) and (A;) we arrive at

(21) Z (050" )z, — Z(b“ [i‘(a:ik);,.zk—j(b;)xj] —+

Fk=1 J k=1 7=1

] N
+ o Ec},lu"];O (t=1,...,m).
8=1
Hence

22) I EZa,kw e — Z(bl w') +2 f)—,,

i k=

where
n

A" = 2 (a;:k)a:j.’zk_ Z(b;)x,‘l‘c:

J,k=1 F=1

Let v = {v1,...,9"}, where v'(z) are non-negative functions of
class C%(D), vanishing in the part of D lying outside a sphere K with
centre at the origin and radius E.

Now we make use of the identities

m
(23) v‘(L’w— é:cZ,w”)
m m n n
= wi(L*iv— Zcﬁvs) + 2 [vi Z(d}kwi)zk—wi Z 0%, — b}"v"wi]z .
8=1 F=1 k=1 k=1 i

By summation over ¢, taking advantage of (22), and by integration
over D we obtain

(24) fZA' i wa‘L“'vdw—I—ZZ fB" (@, &)dw,

where
n n
(25) B (@, e) = o Y (afpw')s,—w' D ahvl, — biv'w’
k=1 k=1

Consider the sequence {D,} occurring in the definition of property
(P) of domain D. By property (P), for any fixed R there exists an index »
such that D ~ Kr < D,. This relation implies the relation D—D, ¢ D—Kgp,.
Observe that
(26) limB(w,e) =0 for z¢dD,,

e—0

because u'(x) = 0 for #¢dD and v'(2) = v}, = 0 for 2edD,—dD..
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We have assumed for simplicity that each D, is normal with respect
to every plane z; = 0 (¢ = 1, ..., n). Thus, denoting by D] the projection
of D, on the plane z; = 0, we have, for zeD,,

A <o <yl(@) (G=1,...,n),

where z; — (@15 220y @1y Tyyry oeey @n) aDA ¢ ('), yl(x;) are continuous
functions in x;eD).
The iterated integrals formula yields

(27) [ Bi(s,e)ds = [Bi(s,e)de
D

D,
27 P ’ 07 , ’
= [B(w, &) |g=vicydm;— [ B (2, &) foj=dl(a)) datj -
§7) o’
1 4

By (26); (27) and the Lebesgue convergence theorem we obtain
(28) lim [ BY(v,e)ds = 0.

&0 p

By passage to the limit in (24) we obtain the inequality

(29) fzm‘ || L**vdz > 0

Let % = yB(2)eC*(E"), y®(x) =1 for |2| < R—1, yF(x) =0 for
lz] > R, 0 <yF(x) <1 in E" and let the expression

n - n
R R
‘29|%q|+'A§:|quﬂ
i=1 7,k=1

be bounded by a constant independent of R.
Put v (z) = »%(2)®*(x). Then all the conditions required previously
for v'(x) are satisfied. Moreover, we have

(30) L*'v = yRL*"®+2 2 ahyE Bh + czs‘( 2 YR+ Zb;yg)

7, k=1

By (29) and (30) we obtain

m
(31) fz || YR L* Ddw+
D i=1

+ f2|“|{ Z%k?’f +¢( ‘ a7ky$zk+2b77$)} =>0.

The definition of »®(x) and condition (19) imply

) 1m [ 3o Z 75 0% +¢‘(Z aﬂcmﬁZ biyz)}do

R-seop 21 j.k=1
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Let z be an arbltrary point of D. We shall show that (%) = 0 for
i=1,...,m. Suppose u'(Z) # 0 for some 7. Then by continuity of u
and by (18) we have

m

(33) | ZmﬂL*iwm = —9,

Dr\Kg 1=1

where o > |Z| and 6 > 0 are some constants.
By (32) we deduce that one can choose R in (31) so large that
R >p+1 and

m

m
: : . é
*i _ 1, R y* .
fKZ WL qada:_anK;l‘mw LY®dn > — .
p- pin
This contradicts (33) and thus the theorem is proved.

Remark. Clearly the theorem remains true if the domain D is
replaced by the whole space E". In this case the boundary equality of
the solutions in question does not occur in assumptions.

Now we state some theorems which can be derived from Theorem 4
as corollaries.

THEOREM 5. Assume D to have property (P) and assumptions (A})-(A;)
to hold true. Suppose that the inequalities

m
(34) lajul < My(lol24+1)""%, |5l < My(lal2+ 1), Me(a) < —

8=1

(t=1,...,m; j,k=1,...,m)

are satisfied almost everywhere in D, where M,y Myy Mg >0and 0 <1<1
are constants. Let u, = {ui} and u, = {u;} be solutions of (17) such that

[1ujlexp{—ao(j2|2+1)*}de < 00 (i=1,...,m;1=1,2),
D

a, being a positive constant less than the positive root of the quadratic equa-
tion (with respect to a)

(36) Q(a) =nM 2o +nd[(2—A)M,+M,Ja— M, = 0.

If, moreover, ui (@) =ui(z), i=1,...,m, for zedD, then ul (@) = ui (),
i=1,...,m, in D.

Proof. Let a, be the positive root of (36). Select 0 < ay < a, and

set a; = (ap+ a;)/2. It can readily be shown that the vector-function
= {®', ..., d™}, where

®' = exp{—ay(lz2+1)"} (i=1,...,m),
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satisfies the inequalities L*'® < ®°Q(a,) < 0. Thus the assumption (18)
of Theorem 4 is fulfilled. Moreover, one can easily check that

max D' |aj @, | + & (max|ajy| + max [bf]) < K exp{—ay(lal*+1)"},
7 k 7, 7

where K is a constant which depends on M,, M,, A, ay, a, and n. This
means that (35) implies (19). Therefore Theorem 5 is a consequence of
Theorem 4.

We list below a few more theorems which can be derived from
Theorem 4 by specializing the vector-valued function @.

THEOREM 6. We assume that D has property (P) and hypotheses
(A})-(A;) hold true. Let inequalities

m

el < My(lo2+1), (Bl < My(lo2+1)"2,  Nei(z) < — M,

8=1

(t=1,...,m; j,k=1,...,n)

with M; >0, M, >0 and My >2n(4M,+ M,) be satisfied almost every-
where in D. Suppose that the solutions w, = {u1} and wu, = {us} of (17)
satisfy the condition

[ldl(e2+ 1) dr < 00 (i=1,...,m; 1 =1,2),
D

where 0 < ay < a;,—2, a, being the positive root of the quadratic equation
Q(a) = ana2+n(2M1+M2)a_Ma = Oa

If the solutions in question coincide on the boundary of D, then they
are identical in D.

For the proof we choose
@' = (Jz)2+1)""0* (i =1,...,m)

and show that L*'® < &'Q(a,+2) < 0 almost everywhere in D. Then
we verify that

max Y’ |af ®%, |+ O (max |aj| + max |bf]) < K(|2|*+1)%0",
i < ik i
where K >0 is a constant. Thus Theorem 6 follows from Theorem 4.
THEOREM 7. Assume that the domain D is the strip

(37) D={x: —co<2j<o0 (j=1,...,0—1), 0 < @, < h}.
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We retain assumptions (A;)-(A;). For i=1,...,m and j, k=
1,...,n—1 let the coefficients of (17) satisfy, almost everywhere in D, the
inequalilies

el < My(l2ff 4+ 1), [ajl < My(lal*+ 1), My < apn < M, (Ja*+ 1),
1] < My(lz*+ 1) 0< bi < My(|o2+1)* (or —My(|z)*+1)*< b< 0),

m

20*' <0,

8=1

Myy..., Mg >0, 0 <A< 1, u>0 being constants.
Consider two solutions wu, = {uy}, u,= {us}, 1=1,...,m, of (17)
such that

[ lulexp{—ap(lzl+ 1) dw < 00 (i =1,...,m; L =1,2),
D

where 0 < ay < ay, a; being the positive root of the quadratic equation
A2M (n—1)(1 4 r*-M) P4

2
“;'22 +Ms)<1+h‘-‘)] a—Z28

+A(n—1) [M1(2—1>(1+h2““’)+ ( 16h

If the solutions are identical on the boundary of D, i.e. for x, = 0 and
Tn, = h, then they are identical in the whole strip D.

Proof. This theorem follows from Theorem 4 by choosing

&y

o = cos—ﬁb—exp{—az(|w’|2+l)"2} if 0<bb < M(Jz|2+1)
and
, n+ h . .
o = sinfi("”ML) exp{—ay(|#'|2+ 1)} it —Mg(|z]2+1)* < b, <0

(¢ =1,...,m), where a, = (ay+a,)/2, &' = (®1y ..., Tn_;) and

n—-1

1/2

ot = (3
i=1

THEOREM 8. Let D be the strip defined by (37) and let assumptions
(A])-(A3) hold true. Suppose the coefficients of (17) satisfy, almost every-
where in D, the inequalities

laikl < My(lo*+1), | < Mo(laP+ 1), My < dp < My(|o*+ 1),
b < Ms(lal* 4+ 1), 0 < bn < Mo(jal*+1)" (or —Ms(jaf*+1) < b <0),

m
DE<0 (i=1,..,m;j,k=1,...,0-1),

8=1
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where M, M,, Mg, Ms >0, p=>1, M, > M; and

32uh?(n—1)

2

My >

[2M1(1+h“)(#+1)+ (—M- +M5)(1+h>].

Let u, = {uf}, Uy = {ug} be solutions of (17) such that

[lad(af*+ 1) dw < 0o (i =1,...,m5 1 =1,2),
D

where 0 < ay < a,—2u, a, being the positive root of the equation
M,(n—1)(1+ h*)a®+

=D 2,0+ TR M B ot T

Under these assumptions, if ui = us (i = 1,...,m) on the boundary
of D, then the solutions coincide in D. ~
This theorem is obtained from Theorem 4 by selecting

. &
& = (j&'+1)"%"*cos =
(I ]*+1) cos

in the case 0 < by < M,(|z|*+1)* and

m(Zn+ h)

D = (|a' |24 1) %/2—#gj
(l='|*+1) sin ——

in the case — M (|z|*+1)* < b} < 0.
THEOREM 9. Consider system (17) in the half-space

(38) D{—co<2j<o0(j=1,...,n—1), 2, > 0}

and retain assumptions (A;)-(A;). Fori=1,...,mand j, k=1,...,n—1
let the.coefficients of (17) satisfy almost everywhere in D the conditions

lafe] < My(J2"P4+1)2,  Jahe| < Mo(10' P+ 1)) ah, < M,

m
b < Myl P+, My <bn < Mo(l2'P 1), Yl < My,
8=1

where 0 <A<1, p>0, My,..., Mg >0, M¢> M and 4M;M,< M;.
Let uy, = {uy}, u, = {uz} be solutwns of (17) such that

Jluilexp{—a,(|of*+1)"}dz < 00 (i =1,...,m; 1 =1,2),
D
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where 0 < ay < a;, a, being the positive root of the equation

[An—1)(M,A+2M,)4 Mjz]a2+

A(n—l)[M1<2—A)+ %j[i"—s o,

M—4 MM,
o,

Under these assumptions, if ul =l (i = 1,...,m) on the boundary

of D, i.e. for ¢, =0, then ui =wus (1 =1,...,m) in D.
Proof. Theorem 9 is deduced from Theorem 4 by choosing the com-
ponents of the vector-valued function @ as

@i = 6_("2"‘“3)‘”1&0_“2([1"'2*' nh2 (@ = 11 ceoy m)

With az == (ao—l— al)/2 and ag = M5/2Ma.
THEOREM 10. Let D be the half-space defined by (38) and assume

(A})-(A3). Suppose that the coefficients of (17) and functions ¢} satisfy the
boundedness conditions

laf] < My(|0'2+1), |ab] < My(l2'P+1)2,  ahy < M,,

bl < My(l@'P4+1), M, <b < Me(loP+1), D<M,
8=1

where u >1, M,,..., Mg >0, My, > M; and
M; < —4[(n—1)(M,+2M,)+ M]u*—2[(n—1)(2M,+ M,)— M;]p.
Let u, = {uf}, Uy = {uﬁ} be solutions of (17) such that
f|u§|([x2[+1)-°o/2dw< o (i=1,...,m;1=1,2),
D
where 0 < ay < a;—2u, a; (>2u) being the greater positive root of the
equation

(e —1)(M,+2M;)+Ms]a®+ [(n—1)(2M+ M) — M]a+ M, = 0.

The above assumptions tmply that if ut = u2 (¢=1,...,m) forx, =0,
then u! = u} in D.

The proof consists in applying Theorem 4 with functions

@' = e (2’| +1)"2 (i =1,...,m),

where a, = ay+2u.
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