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On a class -of vector-valued analytic functions®

by J. GLoREVNIK and I. VinAv (Ljubljana)

Abstract. Given a complex Banach space X and an open connected set 9 in the
complex plane, denote by &7 (2, X) the class of those analytic funetions f: 2—+X for

which there exists a complex-valued function ¢ defined and analytic on 2 and such
that |f(0)l= le(&)| (e 2). In the paper a characterization of & (2, X) is given.
2 being a neighbourhood of infinity, it is proved that every function in & (2, X) is
a complex-valued analytic function multiplied by a polynomial. For f as above let
us say that property p holds if fis entire and if ||f({)]] = 1 (Rel< 0), If (D) = |@ (£)]
(Rel > 0), where ¢ iz a complex-valued analytic function. This being the case, it is
shown thai ¢ ({) = e'fe?* (B, y real constants). Next, 4 being a bounded normal opera-
tor on a complex Hilbert space and yp a complex-valued entire analytic furection,
the necessary and sufficient conditions are obtained for {~—y({A4) to belong to & (2, X).
Finally, y being as above with y’(0) 3 0 and B being a bounded linear operator on &
complex Hilbert space, let -y ((B) have the property p. Then y () = e¥e? with
B real and B = ¢!°P, where P is a positive operator and « is a real constant.

0. Imtroduction. In this paper we give a characterization of
those analytic functions with values in a complex Banach space X which
have the norm equal to the absolute value of a complex-valued analytic
function. Using this characterization, we investigate some special classes
of such functions.

By the result of I&. Thorp and R. Whitley [4] it is easy to see that
every analytic function with the above property is trivial (i.e. equal to
a fixed vector multiplied by a complex-valued analytic function) if and
only if every point of the umit sphere of X is a complex extreme point.
On the other hand, for a large class of complex Banach spaces (which
contains complex Banach spaces with sup norm of dimension greater
than 1, Example 2.2, and algebras of linear operators over complex Hilbert
spaces of dimension greater than 1, Example 4.2) there exist non-trivial
apalytic functions with the above property.

0.0. DEFINITION, Let X be a complex Banach space and let 2 be
a domain in the complex plane. We say that an analytic function f: 2—+X
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belongs to the class & (2, X) if there exists a complex-valued function ¢
defined and analytic on 2 and such that [[f()]] = le(¢)] (L D).

The paper has four sections. In Section 1 we give a characterization
of the functions of class &/ (2, X). Next we study two special cases of the
functions of class & (2, X): in Section 2 2 is a neighbourhood of infinity
and in Section 3 2 is a half-plane. Section 4 deals with the functions of class
& (2, X), where X is the algebra of bounded linear operators over a com-
plex Hilbert space.

Throughout the paper we denote by C the complex plane. An open
connected subset of C is called a domain. If X is a complex Banach space,
we denote by S(X) = {we X: |lz|| = 1} the unit sphere of X, by X’ the
dual space of X and by L(X) the algebra of all bounded linear operators
with domain X and with range in X; if 4 ¢« L(X) we denote by o(4),0s(4)
and R(2, 4) the resolvent set, the spectrum and the resolvent of A4,
respectively. By {z, #) we denote the image of z¢ X under uwe X'. If # is
a commutative complex Banach algebra we denote by Wi(#) the set of
all multiplicative linear functionals over 4.

1. A characterization of the class (2, X).

1.0. THEOREM. Let X be a complex Banach space and 2 a domain in
the complex plane and let f: 2—X be an analytic function. Then f belongs
to the class <7 (2, X)if and only if an we 8(X') exists such that |{f(L), ud|

= |If(O)| (Ce @). If the latter condition is satisfied, then every comples-
valued function p, defined and analytic on 2 and satisfying

(1.0) 17(£) (Ol (5e2)

has the form @(£) = e { (L), ((e @), where a is a real constant.

Proof. Let an ue S(X') ex1st such that |[<f(£), ud| == [[f(O)]] (£ 2).
By the analyticity of f it follows that {r>¢@ (L) = {f({), ) is a complex-
valued function, defined and analytic on 2, which satisfies (1.0).

To prove the converse, let a complex-valued function ¢, defined and
analytic on 2, satisty (1.0). If ¢ = 0, then we have nothing to prove,
so assume that ¢ # 0. Then there exists a subdomain 2, « 2 such
that () £ 0 ({e 2,). It follows that the function fi-g¢(L) = [1/e(L)1f(£).
is analytic on 2., and by (1.0) we have ||g(¢)|| = 1 ({e 2,). Now, choose
{oe 2,. By the Hahn-Banach theorem an wue S{X') exists such that
1= llg(C)li = <g(&), up. Since [<g(L), upl < lg(O-ull = 1 (Le Zy), ib
follows Dby the classical maximum modulus theorem (ef. [3]) that
{g(t)yuy=1 ((eD,). This means that ()= {f(&),u> ({e2,). Since
the functions f and ¢ are both analytic on 2, we have ¢ () = {(f(£), w)
(Ce2). By (1.0) it follows that |(f((),u>| = If(D)ll (L€ D).

The last statement of the theorem is trivial since any two complex-
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valued functions ¢,, ¢,, defined and analytic on 2 and satisfying |p, ()|
= |p.({)] (L€ 2), can differ only in a factor €, a real. Q. E.D.

1.1. CoroLLARY. Let X be a complew Banach space and 2 a domain in
the complex plane and f: 22— X an analytic funciion. Let 2, be a subdomain
of 2. If |f (D= lp(D)] (£e2,), where ¢ i3 a complexs-valued function, defined
and analytic on @,, then the function @ can be continued analytically to all 2.

Proof. By Theorem 1.0 an ue S(X ') exists such that () = {f({), u)
(L€ 9,), which proves the assertion. Q. E. D.

2. The entire functions of class «/(2, X), where 2 is a neighbourhood
of infinity.

2.0. THooREM. Let X be a complex Banach space and let f: C—X
be an entire analyiic function. Letl there exist a constant B < oo such that

(2.0) IF( O = le()]  (I¢1> R),

where ¢ is a complev-valued function, defined and analytic for || > R.
Then there exist an entire complex-valued analytic function v and
Vectors Gy, Gy, «.., @,_,€ X such that

(2.1) &) = v (@m+al+al®+ ... +a,,0"7)  (LeC)

 Further, @ is an entive function and the degree n— 1 18 equal to the number
of zeros of ¢ (counted with multiplicity) on the disc |{| < R. If f has m
zeros on the dise |{| < R, then among the vectors ay, @y, ..., a,_, at most n—m
are linearly independent.

Proof. By Corollary 1.1 ¢ is an entire function. If ¢ = 0, then we have
nothing to prove, so assume that ¢ 5 0. Then ¢ has a finite number of
Zeros (py Cyy..vy £ s On the dise || < . The function {—[1/@({)]1f({)
is & meromorphie function, analytic for [{| > R since by (2.0) |I[1/@ ()1 (DI
=1 (|{| > R). Its poles on the disc |{| < R coincide with the zeros &,
C1, tey Cn—z of @ 80 that CHIL(C) = (C_CD)(C_":I) (C—Cn—z)[l/‘?’(t)]f(c)
is an entire function. Since L ({)| = (£ — L) (E—&1) - (E— L2l (1] > B),
it follows by the generalized theorem of Liouville that for every
ue S(X’'), {(h({), u> is a polynomial of degree less than n., Further, by
Theorem 1.0 there exists an uye S(X ') such that [({— L) ({— ) ... ({—Cna)
= |<h(E), up>] (&) > R), which means that (h({), %) is a polynomial
of degree n—1. This implies that &({) is a polynomial of degree n—1:

R(E) = @e+al+ .o +a, 8"

where dgy Gy ..y 8y_1€ X, @, #0. So we have f(£) = »({)h(Z) (Le C),
where £i (L) = @(0)/[({~Lo) ({—C1) -.. ({—CLu_s)] is an entire complex-
valued analytic function which has no zeros on the disc |{| < R. Further,
it is evident that ¢ has i — 1 zeros on the disc |{| < B.
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To prove the last statement of the theorem, assumne that f has m zeros
on the disc |¢| < R. Since p(¢) # 0 (|] < R) it follows that the polynomial
ay+a L+ ... +a,_,{" ! has at least m zeros. Now it is easy to see that
among its coefficients at most # —m are linearly independent. Q. E.D.

2.1. CoROLLARY. Let X be a complex Banach space and let f: C—X
be an entire analytio function. Let there exist a constant B < co such that

IF(ON = lg(&)l (1§ > R),

where p 18 a complex-valued function, defined and analytic for |J| > R. If the
(entire) fumction @ has mo zeros on the disc || < R, then there exisls an
xe X such that f(L) = @(l)x ({e C).

2.2. ExAMPLE. The converse of Theorem 2.0 does not hold in general.
To see this, we construct a polynomial f which does not belong to (2, X)
for any neighbourhood 2 of infinity. Let X be the complex Banach space
of complex number pairs z = {z;, 2}, where &2 = max{|#], |z:|}. Let
f(&) ={¢+1,{—1}=¢{1, 1} +{1,—1}. Then

IE+1]  (Rel>0),

IIf(C)IIf It—1] (Rel< 0),

and it is clear that’ there exists no analytic function ¢ such that {f({)}
'="|p()| in a neighbourhood of infinity. If we write 2, = {{: Rel{ > 0},
the same example shows that s/ (2,, X) contains non-trivial funetions.

‘3. Some entire functions of class »/(2, X), where 2 is a half-plane,
We shall need two lemmas. The first one is an easy consequence of a the-
orem in [1], p. 220.
3.0. LEMMA. Let ¢ be an entire complex-valued analylic function satis-
Tying:
Reg(l) =0 (Rel> 0),
Regp({) =0 (Re{ =0).

Then
p(l) = if+yl (L C),

where f and y are real constants with y > 0.

3.1. LEMMA. Let X be a compless Banach space and let f: C—X be an
entire analytic fumction. Let there exist a domain @ such that |f()] = 1
(£ D). Then [f(D) =1 (e C).

Proof. By Theorem 1.0 there exists a u#e<S(X’) such that
{@)yu) =1 (e 2). By the analytic continuation principle it follows
that {f({), %) =1 ({¢C), which proves the assertion. Q.E.D.
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3.2. TuEorREM. Let f be an eniire analytic function with values in a
comples Banach space. Lt

(3.0) IfF(I =1 (Ref<0)

and let there exist a complex-valued fumction ¢ defined and analytio for
Rel{ >0 and such that

(3.1) 17O = lp(&)l  (Rel > 0).
Then
P() =ePe®  (Rel > 0),
where f and y are real consiants with y = 0.
Proof. By Lemma 3.1, (3.0) implies

{3.2) if(OI=1 (Ref>0).

By Corollary 1.1 ¢ is an entire function and by (3.1) and (3.2) we have
lp(l)l =1 (Rel > 0) and |p({)l =1 (Rel = 0). So ¢ has no zeros for
Ref > 0. Consequently, the function (r»y(l) = loge({) is analytic for
Rel > 0 and satisfies

Rep({)>0 (Rel>0),

Reyp(l) =0 (Re{ = 0).

By the Riemann-Schwarz symmetry principle y is an entire function.
So by (3.3) Lemma 3.0 implies that ({) = i+ ¢ ({ ¢ C), where § and y
arereal constants, y > 0. Now the assertion follows immediately. Q.E.D

(3.3)

4. Some examples of the operator-valued functions of class «/(2, X).
Let f be an entire, complex-valued analytic function. So

(4.0) F(&) = a+el+el+ ...,

where the series converges absolutely in the entire complex plane. If
X is a complex Hilbert space and 4 ¢ I(X), then also the series

(4.1) FCA) = Gl +6,(EA) +ea(CA) + ...

(here I is the identity operator) converges absolutely in the entire complex
plane and so it defines an entire operator-valued analytic funection. In
the special case where the operator A is normal, the following theorem
asserts that the function {—f(A) belongs to the class (2, L(X)).

4.0. TEROREM. Let X be a complew Hilbert space, Ae L(X) a normal
operator and f a non-constani, complex-valued entire analytic fumction.
Let 9 be a domain in the complexr plane.

Then a complen-valued function g, defined and analytic on D and satis-
Tying |If (4] = 1g(&)| (£ D), exists if and only if the specirum o(A) contains
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a point 7y such that
DI IfFEm)l (e D; 1 eo(4d)).

- Let either condition be satisfied. Then

9O = IfECno)l (L D).

Further, n, lies in the boundary of o(A) and n, = 0 if and only if g
i8 a constand.

Proof. Since A is normal, it follows by (4.1) that f({4) is normal
for every ¢.

Let 7n,¢ 0(A) exist such that

IFEMI < 1f(Ene)l  (Le D5 nea(4)).

Define g({) = f({no) (£« 2). Since f is an entire function, the same
holds for g. Further, the operators f({A4) being normal, it follows by the
spectral mapping theorem (cf. [2]) that

IF(EA) = sprf(t4) = supIf(en)| = 7(en] = WO (Ce2)

(here spr means spectral radius).
To prove the converse, let

(4.2) IF(EAN = 1g(8)  (£e2),

where ¢ is a complex-valued function, defined and analytic on 2. Let
# = I(X) be the second commutant of the set {E(4, 4): Ae g(4)}. It
is known (cf. [2]) that # is a commutative complex Banach algebra with
identity, which contains 4, f({4) ({e C) and which has the property that
the spectrum of an element of % with respect to # is equal to its spectrum
with respect to L(X). By Theorem 1.0, (4.2) holds if and only if a uy¢ S(4’')
exists such that

(4.3) I<F(eA), upl = IF(CAN (Le D).

A glance into the proof of Theorem 1.0, where such a u, was con-
structed, and the fact that by the normality of operators f(¢4) we have
If(EA)| = sprf(L4) ((e C), tell us by the theory of Gelfand (c¢f. [2]) that
we may take u e I(F). Now, by (4.3) we have

IKf(EA), wp) < IKf(EA), wdt (Le D5 ue M(B));

hence it follows that

(4.4) FENI < 1fEm)l  (Le D5 neo(4)),

where 5, = {4, 4yye a(A).
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Now we prove the last statement of the theorem. Let the ahove
conditions be satisfied. By. the first part of the theorem we have

(4.5) (O = 1)l (Se D).

To prove that #, lies in the boundary of o(4), assume that o(A)
contains a neighbourhood #(7,) of the point %, Let (e 2, {;5 0. Then
Lo%(ne) = {# = Lm; ne (1)} is & neighbourhood of the point 7= {y7,.
For each v in this neighbourhood we have |f(7)| < |f(z,)] by (4.4). By
the classical maximum modulus theorem (c¢f. [3]) this is not possible
since f is not a constant. So 7, lies in the boundary of o(4). Finally, since
f is & non-constant function, it follows by (4.5) that ¢ is constant if and
onlyifn, =0. Q.E.D.

4.1, Remark. The proof of Theorem 4.0 shows that the assumption
that f is an entire function is not essential — if we drop it, some restrictions
on the domain of definition of f are necessary.

4.2, BXAMPLE. Let X Dbe a complex Hilbert space of dimension greater
than 1, and 4 e L(X) a selfadjoint operator whose spectrumn is contained
in the interval [0, 1] and contains the points 0 and 1, By Theorem 4.0
we have

4l =1  (ReZ<0)), ™| =lef| (Rel>0).

If we write 2= {{: Ref > 0}, the above example shows that < (2,
L(X)) contains non-trivial functions if the dimension of X is greater
than 1 (since in this case operators Ae L(X) with the above properties
always exist). _

On the other hand, if g is an operator-valued function, satisfying

(4.6) gl =1  (ReZ<<0), [g(O)ll =] (Rel>0),

then ¢ does not necessarily have the form g(f) = ¢’ with Ae L(X). To
see this, let f be a function whose values are linear operators over a three-
dimensional complex ITilbert space, given by

10 0
fey=10¢ée 0
foo o
in some orthonormal basis. Clearly f is an entire analytic function which
satisfies (4.6). Since f(£)~! never exists, f cannot have the form f(£) = €.
However, we have the following theorem.

4.3. TrmonnM. Let X be a comples Hilbert space and 4 « L(X), A # 0.
Let f be an entive complex-valued analytic function satisfying f'(0) # 0.
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Let
(4.7) If(E4)l =1 (ReZ<0)

and let, on the half-plane Rel > 0, the norm ||f({A)| be equal to the absolute
value of a complex-valued analyiic function.

Then there exist a constant y and a real consiant § such that f(Z) = e*Pe?*
(¢e C). Further, the operator A has the form A = P, where P is a positive
operator and a is a real constant.

For the proof we need the following lemma.

4.4, LEMMA (ef. [5]). Let X be a complex Hilbert space and A e L(X).
Denote by I< I(X) the identity operator. If |[+irAl = 1+o0(t) (z real,
7—>0), then A is a selfadjoini operator.

Proof of Theorem 4.3. Expand f into the Taylor series

f(c) = 00+015+02C2+
Then
f(CA) = el +0,(EA) + ¢, (EA)+ ...

By the assumption we have ¢; # 0 and by (4.7) we have |¢f = 1.
Now, (4.7) implies

IFEAN = T +(0,/00) (EA) +(cafo) ({A)2+ ...l =1  (Rel < 0).
In particular, if { = 4v with = real, then we have
L +iz(e/eo)A] + (ir)2(e[C) A%+ ... =1 (7 real)

50
I +-ir[(01/c)A]ll =1-+o(zr) (v real, v—0).

By Lemma 4.4 it follows that the operator (e,/c,)A is selfadjoint.

Further, since in the half plane Rel > 0 ||f(£4)| is equal to the
absolute value of a complex-valued analytic function and since we have
(4.7), it follows by Theorem 3.2 that

(4.8) If(CA) = 1e*]  (Rel > 0),

where 4 > 0. In our case we have § > 0, since 6 =0 would imply by
(4.7) and (4.8) that ||f(¢4)| =1 (te C) and by the theorem of Liouville
it would follow that f({4) is & constant, which is not possible since by the
assumptions 4 # 0 and ¢, # 0.

Now, since (¢;/¢)A is a selfadjoint operator and since ¢,/c,# 0, 4 is
a normal operator. By (4.8) and by Theorem 4.0 a point 7, ec(4) exists
such that [f({n,)| = (6| (Rel > 0). Since 8 # 0, by Theorem 4.0 it follows
that %, # 0 so that

IF(E)F = [6€F]  (Rel > 0),
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which proves that f(¢) = ¢¢” (¢ C) with § real. Further, by Theorem
4.0, (4.7) implies |f({n)| < If(0)] (Rel < 0; nea(4)), so that

(4.9) [k <1 (Ref< 0, nea(4d)).

Assume that 7 # 0, +7eo(4). Now (4.9) gives [¢®"F7] =1 (Re¢
< 0), which is not possible since 6> 0 and since 7 # 0. This shows
(since (o,/0,)4 is & selfadjoint operator with e¢,/c, # 0) that ¢(4) lies on a
ray with the beginning at the point 0, which proves the last statement
of the theorem. Q. E.D.
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