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Index of the Dirac operator in R"

by JAN A. REMpPArA (Warszawa)

Abstract. In this paper a proof of the formula for the index of the Dirac operator in R" is
given following Bott and Seeley [1] but without using K-theory.

C. Calliag [2] has calculated the index of the Dirac operator in R in
connection with some problems of the Yang-Mills theory. An interesting
implication of this paper is the fact that this index can be non-zero for odd n.

R. Bott and R. Seeley [1] have noticed that Callias’ result can be
derivéd from Fedosov’s formula [3], [4] (see also [6]) in purely algebraic
way. Modulo a constant depending only upon n the index formula may be
obtained very simply. The calculation of the constant presented a certain
problem, which was overcome by using K-theory.

The purpose of this paper is to compute the above-mentioned constant
without the use of K-theory.

This will give a full purely algebraic derivation of Callias’ formula for
the index of the Dirac operator in R® from Fedosov’s formula for the index
of an elliptic operator in R”. We shall omit all those details that can be found
in the paper by Bott and Seeley cited above. Our notation is also taken from
that paper.

Let V' and V” be finite-dimensional complex vector spaces and let V
=V'QV".

Let us consider a differential operator D acting in C*(R" V) with the
(full) symbol

(1) o (x, &) =0()®I+il®U (x)

satisfying the conditions

2 (&)=Y &g, 6@ =P =¢+...+80,
i=1

3 Ux)*=1 for |x| =1,

) Ux)=U(x/Ix]) for |x]=>1.

Such an operator will be called the Dirac operator in R
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It is known that D has finite index given by Fedosov’s formula

4) index D = _(ﬁ)"((;n_——ll))"- j Tr(o~ ' do)® !,
szt

where S2% 1 = {(x, &): [x|*+|¢|* = 1}, do is the exterior derivative of the
matrix o, and Tr(c~ 'do)*"~! denotes the trace of the (2n—1)th exterior
power of the matrix 1-form o~ !do.

Bott and Seeley observed that formula (4) can be written as

(5) index D = _(%)"((Znn_—ll))!! J‘ Tr(z" 'dz)* !,

Zg x
where z(£, x, 1) = 8(§)®cos t+isin tQU (x), Z,,, =S5z ' xSy ' x1,, SF7,
S%~! are unit spheres in R} and R}, respectively, and I, = [0, 3n]. From (2)
and (3) we easily derive that
z Y, x, t) = 5(§)®cos t—i sin t QU (x),
(6) z 'dz=cost(6®cost—isin t@U)déRI+
+i sin t(0®cos t—i sin tQU) I®dU +id ®Udt.

. From now on for brevity we shall omit the tensor and exterior multipli-
cation signs and also instead of 6®/I and I®U we shall write 6 and U.
With such convention the matrices 4 and U satisfy the relations

)] Us=8U, U*=1 & =1 (for|¢=1),

(8) dUé = 8dU, Udd =doU.

By exterior differentiation of the above formulae we get

9 dUU = —UdU, déé= —48d5, —dUdé =dédU.

Formula (6) may be written as
(10) z7'dz = Adé + BdU +Cdt,
where A =cost M, M =cos td—isin¢ U,

B=isinttM, C=iU.
From (7)-(9) it easily follows that

M~' =costd+isintU, doM=-M"'d5, dUM=M'dU,
AdéBdU = BdUAdS =isint cos tdédU,
(Add)? = —cos?t(dd)?, (BdU)?> = —sin?t(dU)>.
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By commutation of Adé and BdU as well as anticommutation of dé and dU
we obtain

11 (Ad6)* (BAUY* = (Ad6BAU)* = (—i sin ¢ cos 1)*(dé dU)*
= (= M+ D02 kgink s cosk ¢ (dO) (dU)
= #** Zksinkt cos* £ (d) (dU)-.
We now start to compute Tr(z™'dz)>"~!. We have
(z~'dz)?" ! = (Adé+ BdU + Cdr)*"~
2n—-2

= Y (Adé+BdUY Cdt(Add+ BdU)*"~27J +(Adé+ BdU)*"~!
j=0

1

and thus
(12) Tr(z 'dz)* !
=(2n—1)Tr(Adé + BdU)**~ 2 Cdt + Tr(Adé + BdU)*"~ 1.

The second term of (12) vanishes on S7™! xS3~!. Computing the first term
by using the commutation of Add and BdU, we get

2n-2 .
(Ad6+BdUy" 2= ¥ (2";2)(Ad5)"(BdU)z"‘2"‘.

k=0

Now, (5) may be written as follows:

_ iy =D! 202 R
index D = (21:) (2n—2)!(,._1) JTr(Adé) (BdUY~ 1 Cdt

ZC,x,l

w2

in2+n+2

=m J Tré(dé)" ! J Tr U(dU)""-jsin""tcos"“tdt.

n— 1 n—1
S< Sx

If we use the well-known formula

n ] 2
7 n n
j inh—1 n—1 r(z) r (2)
sin"” 't cos”” 'tdt = =
0

2r(n)  2(n—1)!

we get

3)
n2+n+2 91 1\2
(13) indexD='2 Gy ((n—?i)!) j Tr & (do)"~ ! ‘[TrU(dU)"”'.

n—1 n—1
Sé Sx
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Next we have to compute | Tr §(dd)" . In view of (2), for |&] =1 we
n—1

s
have ¢

3 =) &¢, 8O =1,
i=1
and thus
(14) Fé+658 =0, i#j, &=L

We see that the matrices &, j=1, ..., n, generate the complex Clifford
algebra C; (cf. [5]), and so V' is a Ci-module.

We have dé = ) & d¢; and thus, for k <n,
j=1

J
@of = Y oo 6Mde .z, =kt Y §197skag g,
f1-~---jk J1 <jg. <Jg

It follows that

Tr 6(dd) ' =(n—1)! ¥ y Tr &8 .81 dg . dg .

j=1 1€j{ <..<jp—1<n

Now, let us observe that if n is even

Tr & &t...6" 1 =0,

In fact, if j,,...,j, are different and k is even, then in view of the
anticommutativity of 8’7, p=1, ..., k, and the basic property of trace we
have

Tr 81 8°2...6% = Tr(= 1) 182... 65 = —Tr §2...6% 5"
= —Tr §16'2.. 5™

and consequently Tr 6’* §’2...8" = 0. Therefore, if n is even, Tr §(dé)" ' =0
and index D = 0.

Now, let us consider the case n = 2m+1. The algebra C5%,,,, has only
two inequivalent non-reducible representations (called spin-representations)
and any representation of C5,., is 2 sum of spin-representations [5]. It
suffices to consider the case where the matrices &I, ..., 6" generate a
spin-representation. Such a representation may easily be given by using the
Pauli matrices

01 0 i 1 0
“1=110] %27 _iof 7|0 -1/
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We may assume that the representation space is C>" = C2®...®C? (m
times) and & are given by ([7], § 115)

62,'_1=03®...®03®01®Iz®...®12, k=1,...,m,
k-1 m—k
62k=63®...®03®02®12®...®12, k=1,-.., m,
N e’ N
k—1 m—k

62"”'1 = i0'3®...®0'3,
N~ —

where I, = [(1) (1)]

The signs + in 6°™*! give two different (ie., inequivalent) spin-
representations. Observe that
2
1

c =6§=0§=12, 0'10'2=‘—i0'3=—0'261

and
Tro,=Tro,=Tre; =0.
From this it easily follows that
Tr 8162..6% =0 for j, <...<j, k <n.

Moreover, we have 6'6%2..6"= +(—i)"1,®...®I,, thus Tr §'§%...6"
= +(—=2)™ = +i*"2™ and '

Te 6(d6y ™" = +(n—)1P™2" 3 (= 1y~ &;dE, ... 42)...d&,
j=1

J

(as usual, the dot means that the factor should be omitted). Hence we have

{ Tré(d&)"“=i(2m)!i‘""'2"‘Z(—l)j‘l ) fjdél...@...df,
n—1 n—1

j=0
S

= +Cm+1)1P"2" [ de,...d¢,

<1

Se

"2 +1/2
- +m P
r{Z+1
5+1)

= 1 ;3mHm .
+(2m+1)!1i°"2 T+
Using the above formula and the equality

(2m)! n/

m+d) = "mr



142 J. A. Rempala

we get from (13) the Callias formula

i1
15 i D=+|(— ] — | Tr U@U)*.
(15) index _<81r) >l J r U(dU)
sm
This is the result we aimed at.
It is interesting to note that by (15) the index D depends on the full

symbol of D.
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