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On the behavior of solutions of parabolic equations
with unbounded coefficients
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1. Let 2 = (#,,...,2,) be a point of the n-dimensional Euclidean
space R" and let ¢ be a non-negative number. The distance of the point
zeR" from the origin of R" is denoted by |z|. Denote by £, a strip
R"x(0,T) in the (n+1)-dimensional half space R"X (0, +oo), where
T < +o00. A point in £, is represented by its coordinate (z,1).

Consider a parabolic differential equation

" ?u 5 . ou
() g{‘aw%+k(|wl+1)u=m, k>0
in R"Xx (0, +o0). Krzyzanski and Szybiak [4] proved the existence of
the fundamental solution of this equation. By using this fundamental
solution, we can see that the solution u(x, t) of the above equation with
the Cauchy data u(x,0) = ¢~ Mot (# > 0) is uniquely determined in
£, and is given by

4k

u(@,t)
k ni2 k(2ucos2kt— ksin2kt
=( | p{— (Zuco ) ot aod,
2usin2kt+ kcos2kt 2(2usin2kt+ kcos2kt)
. 1 _1 2p .
So,if 0<Lt< iy, = % tan A then u(z,t) decays exponentially as

lz| tends to infinity, and «(x, ?,) is equal to a positive constant and further,
if fy <t < 4_7;0’ then u(x, t) grows exponentially as |z| tends to infinity
(cf. Kusano [5]). This fact leads us to a question whether the similar

situation to the above holds or not for solutions of general parabolic
equations of unbounded. coefficients with a suitable Cauchy data.
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2. The following result of Chen [2] gives us an answer to the quesfion
in part:
Let

0
S P T

t,7=1

be a parabolic equa.tion in 27, where coefficients a; (= a;),b; and ¢
are functions defined in £, such that

0< Y ayéd; < Ky(lol*+1)' "¢
i,j=1

(3) for any real vector & = (&4,..., &,) # 0,
b < Ky(lw|*+1)"  (1<i<n),
c< Kq(|o|24+1)

in 2, for some positive constants K,, K,, £, and A¢(0, 1]. Assume that
K =4K K;—[Kyn—2(A—1)K,]? > 0. If the solution wu(x, ?) of
equation (2) in Q satisfies |u(z,t)] < K,exp{po(|#|2+1)*} in Q, and
lu(z, 0)| < Kyexp{— u(|l®|2+1)*} for some positive constants K,, Kg, u,
and u# and if

1 : AVE
T, = Min |T, —— tan!
’ m( "KL 48— 1)K, + 20Ky nA 2K pp )

then there exists a positive constant x such that
lu(@, )| < Kyexp {— u(|z*+1)"}

in Q. for any fixed T' ( < T,).

In this article we shall deal with the question stated in Section 1
under a somewhat stronger condition for coefficients and give an affirm-
ative answer.

3. The following minimum principle due to Bodanko [1] plays an
essential role in the later treatment.

LEMMA 1. Suppose that coefficients of L in (2) satisfy condition (3)
in Qp and that w = u(w,t) continuous in Q, = R"x[0,T] satisfies
Lu<0and u(x,t) > —Kexp{u,(|z|2+1)*} in Qp for some positive constants
K, and po. If u(z,0) >0, then u(z,t) >0 throughout Q.

Using this minimum principle, we can prove the following which is
a general form of Krzyzanski’s theorem [3].
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LEMMA 2. Assume that coefficients of L in (2) satisfy

0< Za, £& < K \(Jo2+1)'7% |£]2 for any real vector & + 0,

hi=
(4)  1bl < K2(|w1=+1)"2 (1<i<n),
ka(lol?+1)" <o

for some positive constants K,, K,, ky and Ae(0,1]. Let w = u(zx,t) con-
inuous in Qp satisfy Lu < 0 and u(z, t) > —K,exp{u,(|z|2+ 1)*} in 2,

tor positive constants K, and p,. If there exists a positive constant K such
that u(x,0) > K;, then it holds that

u(@, t) > Koexp {p*(j2|*+1)*1}
n ET for a positive constant u*.
Proof. Take u* as such as
kq

0 <u*<
[4A(1—A)K,+2nK,]T+1

and put
v(, 1) = Kyexp{u*(lo|*+1)*1).
Then, from (4) we see eagily that

T L2 (lalt 4 DB 4 4 A1) el + 1)) Za 20,4

1,i=1

+2p* A2+ 1) Y (@t b))+ e— (o2 4 1)
1=1

> 4p*A(A—1)TK, — 2u*A(jo*+ 1) T n 4 (ky— p*) (|22 4 1)*
> (o2 4+ 1) [u* (4A(A— 1) TK,— 2ATK ,n— 1)+ ks
>0

in Qp. Putting w(x,t) = u(z,t)—vi{x,t) aﬂd applying Lemma 1 to
this function w(z, 1), we have w(z,t) > 0 in Q7, that is, u(z, t) > v(z,?)

in £2,, which proves the lemma.

4. Now we assume that the coefficients of L in (2) satisfy the condition

ey (Jo?+ 1) &2 < 2 ay & < Ky (joft+1)' g2

(5) for any real vector &,
b < Ko(lol2+1)2  (1<i< n),
ks(|212 1) < ¢ < Hy(lw[24-1)*
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in Qg for positive constants k,, ks, K,, K,, K; and 1¢(0, 1].

Let u = u(x,t) continuous in !_2T satisfy Lu <0 and u(x,!)
> — K exp{po(z*+1)"} in 2r and u(z, 0) > Kyexp{—u(lal*+1)*} for
positive constants K,, K, 4, and u. Suppose that these constants fulfil
the inequality

(6) —21K2n+kaﬂ_l > 0.
We introduce a parameter p (>1) and put
v(z, 1)
20K ,n 2%k
= K expy—u(jz>*+1) o 70— ! 1— p~Yoly— o2l — —2701}
5 P{ pllzl*+1)"e Aologg”( e~’) onOge'u( e~y

where
Vo = (422K, po™ ' — 2AK ,n+ kyp~) (log o) ~L.

From (6) we see y, > 0. Since 1¢(0, 1], it is easy to see that

Lo <
o 47 2 o7 (|2 4 1) Za'iimixj_

Hi=1

—4pA(A—1) g ! (ja+ 1) ) aym,0;—

%=1
n

—2uhg oMl + 1) Y (ay+ byz) + o—

=
— [s(121* + 1) yo o7 log o — (44(A— 1)k, + 24K, n) po 70|
> (|o*+1) pe 70 [447ky o~ "' — 2AnK o+ Ky (o ~70") "' — Aglog o].
If 0<t<y;!, then
422k, o 70" — 2AnK o+ Ky (o™ 70") ' —yologe > 0.

Hence it follows that Lv > 0 provided that 0 <t < y,'. In the fol-
lowing we assume y,'< T. By putting w(z, t) = u(x, t)—v(z, t), we see
eagily w(x,0)>0, Lw <0 in Q?“—l and w(z,t) > —K,exp{u,(|z|2+1)"}

in Q"o_l for a suitable positive constant K. Therefore Lemma 1 implies
w(x,t) >0 in .(_2,,0_1, so u(z,t) > v(x,t) in 5,,0_1. Hence we have
(M @,y =0, 7)

2AKn

2A2k
= Kgexp {—#e“(lwlz+ 1) — pl—e™)— ——* ,u”(l—e")}-

yologo vologe

We consider ¢ = y,! as to be the initial time and (7) as to be the
initial condition for . Repeating the above procedure, we obtain
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w(z,t) > K exp {— po M (J@ff 4 1) g7nltrg D

_ 2;-.K1’n ‘ue_l(l— g_yl(t__,ya—]))_ 212.’91
y1loge y1logo
in B*x[ys'yvo' +71'], where

W t(1— g nlrg 1’)}

vy = (42%k, up~2—2AK,n+ kyu=1p)(log o)

and
, ' 2AK.n 242k,
Ky = Ksex {— (1--¢7")— -#’(1—9‘2)}
i P  loge vologe ’
provided that y,'+y' < T. Hence
2AK.n
(@, yot+yi) = KseXp{— loglg‘ pl—eo Ny ety —

2A%k
" Tlog el =o'+ e‘zyfl)}exp{— pe* (2l + 1),

In general, if y,'+...49;' < T, then it holds that
(8) w(@y yg 4t yiY)
2K ,n
loge

> K exp {— pA— o )+ e v+t oy Y —
loge

where

L= )y '+ oy . F 9‘2"7'7-“)} exp{— po " (jal+ 1)},

y; = (48K, po ' —2AK ,n+ Ky 07) (log o) '

Now we suppose

o

o(e) = Y v <T.

7=0

First we estimate the sum o(g) from above and below. For the brevity
we put 4A%k,u =f, —2AK,n =g and kyu ' = h. Then

= 1
og(p) = logpe —— -,
go:fe gt

The function (fo~ "'+ g+ ho")™! of re(—oo, co) has its maximum

f

at T =1, = %loggh—. Assume that
e

(9) 4fh— g = 47*[4k keg—K3in*] > 0.
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There are two cases: (i) f > h and (ii) f< k.

In the case (i), we can find a number g, (> 1) such that g, > o > 1
implies f > ho and such that 4fhp~!'—g? > 0. For such a number p it is
evident that r, > 0 and there exists an integer p (> 0) satisfying p < 7,
<p+1. So, if gy > >1, then

? oo
(0)> 1o [f dr ¥ f dr ]
(1) = = T —T— T
=8 ) fe T rg e T ) T ethe
Vifho™'— ¢
Yafho—1—g? [4fho—2—g2 + (2hgP + g)(2h +g) + 2h(gP —1) (2he”“+y)]]
(2hgP+14g)[4fho~1—g2+ (2hoP + g) (2h +9) ] —4fho~ 1 —g?) 2R (e?—1) |

We denote by 7',(e¢) the right-hand side of the above. It is easy to
see that

X tan—!

a(0) <o [f ar +fm & ]+ S
@) & logp J fe—1—1+g+her A f9—1—1+g+ her Yo V41

<T1(e)+loge(

1
= + =
for " +g+he®  foP T +g+ he
In the case (ii), it is obvious that v, << 0 for any o > 1. As in the

cage (i), there is a g, ( > 1) such that 4fho~'— g* > 0 for any o satisfying
0o >0 > 1. So for such a ¢ we get

) (1 <@ <o)

00

o(e) = logef

0

dr - . 2 tan—1 ‘/4fh9—1_gz
fe " gt+he"  Vafho'—¢ 2h+g

Denoting the right-hand side of the above by 7,(p), we see easily

logo
fo '+ g+h

Therefore, in both cases (i) and (ii), we have

o(e) < Ta(e)+ (1 <e <o

2 Vafh— gt
lim = tan“ _—
e o(e) Vafh— g 2h+g

from the supposition (6).
Next we estimate the sum of the series

o0

D e7lyits

j=0
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It is easy to see from (6) that

-7
e
(10) 2 ey 1°g92 4Pk o T — 24Kyt kop '@

<1 1 loge
0892 2K n+ kap— ' —2AKynf kgpt 1— o2

By the same reasoning as the above, it follows that

1 logpe
11 2 g
(1) ¢ —2].K2'n—!—k3y"l 1—p?

5. Now we can prove the following
THEOREM. Let

]
LEZ"@waw—FZ +—E

1,j=1

be a parabolic differential operator in Qr, where coefficients a; (= a;),
b; and ¢ satisfy condition (5) in 2 for positive constants k,, ky, K,, K,, K,
and Ae(0,1]. Let u(x,t) > —K,exp{po(|2|*+1)*} in Qp for some positive
constants K, and u, and u(w,0)> K exp{—u(|z|2+1)*} for positive
constants K, and u. Assume that conditions (6) and (9) are valid.

If

1 Vak, ks—EK2n?
T = tan~! > 2 2%_1 <T,
AV 4k ky—K20* —AK,n+ kyp

then there exists a positive constant K, such that u(x, T;) > K. Further
if Ty <t < T, then there ewists a positive constant u* such that

u(x, 1) > Keexp{u" (t—T;) (lo]*+1)%}.

Proof. By Lemma 2 it suffices to show the existence of a constant
K, in our Theorem. As was shown already, the function o(p) in.Section 4
satisfies .
limo(p) = T, .
e—1
So, given any positive number ¢ we can find g, ( > 1) such that if
0o > ¢ > 1, then u(x, T;) > u(z, 6(g))—¢/2. On the other hand, there
exists a.n integer N, (> 0) such that N > N, implies u(m o g))

> u(e, Zy ')—&/2. Therefore it holds that u(z, Ty) > u(z, 27’7 —e.
Hence (8), (10) and (11) yield



64 T. Kuroda and L. 8. Chen
2AK nu+ 202k, u?
— 22K ,n+4-kyp?

We fix zeR" arbitrary. Letting N tend to infinity and ¢ to zero,
we get

u(x, Ty) > K exp {— }exp{—#e‘”“(lcvl%l)‘}—e-

X 2 2
u(z, Ty) > Ksexp{w 2AK s+ 24K }

— 20K n+ kyp?

Taking K, equal to the right-hand term of the above, we have
u(x, T;) > K¢ at every point zeR"
Thus we have the theorem.

6. In our Theorem we assume Lu = 0, |u(z, t)| < K,exp {u,(|z|*+1)"
in 2, and u(z, 0) = K,exp{— u(|#|*+1)*}. Then the assertions of our
theorem and of Chen’s result stated in Section 2 are both valid. Thus,
if t <T,, then u(x,t) decays exponentially as |x| tends to infinity and,
if T <t < T, then u(xr,t) grows exponentially as |z| tends to infinity.
It would be a hard problem to determine the behavior of u(x,t) for
te(T,, T;) as |x| tends to infinity.

For equation (1), we may takek, = K, =1,k = Kg = k*and A =1
and further K, can be taken as small as we want. So, in this case, it is
o7 ’:‘ and we can conclude the property

of the solution u(x, t) stated in Section 1 without use of the fundamental
solution of (1).

1 2
clear that T, = Ty = — tan™' —
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