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A CONTRIBUTION TO THE SEQUENTIAL ANALYSIS

§ 1. Introduction. The sequential analysis introduced by A. Wald
in 1947 was an improvement of the probability ratio test and since that
date further improvements and refinements have been made by Wald
himself and by other research-workers. Nowadays a more or less detailed
description of the sequential analysis
can be found in various textbooks, p)A
e.g. [1]. For the purpose of this paper 1
it is sufficient to say that the sample
size is not fixed in advance but de-
pends on the observations, and that
sequential tests possess an important
optimum property as regards the ex- {
pected sample size. 3

This paper is restricted to Wald’s 0 P 2 T i
procedure used for testing simple
hypotheses on the value of p ib Fig. 1
a zero-one distribution where p stands
for the unknown fraction of “ones” (sometimes called successes).

For the sake of convenience some information will be quoted with-
out proof.

lLet Hy: p =p, and H;: p =p, (0 <py < p, <1) denote a pair
of simple hypotheses.

Denote by a and f the probabilities of errors of the first and of the
second kind respectively. The points (p,, 1 —a) and (p,, ) lie on the
graphical image of the operating-characteristic function L = L(p), where L
is the probability of accepting H, (Fig. 1).

Write further

—C o

1-p B 1—p,
A = B =— R =p,/ K=——
o 1—a’ P1/Po, 1—p,
and let N be the sample size and T — the number of successes in the
sample taken from a population with a fixed fraction p.
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The decision rule is the following:

¢ H i T < log B v log K
P (0, 1 g S - - e—_— e — § ————— -
Aecent Ho N og (R/K) log (R/K)
(1) _ log4 log K

wcept H, it T >ry = LN B
aceept Mt "V = Tog(RK) log(R/K) ’

examine the item No. T'+1 if ay < 1' < 7ry.

The operating-characteristic (0.C.) function is approximately given by

1—K" , A1

(2) P = piph Lp) = ——gn-

The average sampling number (A.S.N.) is approximately equal to

(3) v _ L@®)logB+[1—L(p)]log 4
S plogR+(1—p)logk

FFor some spectal cases exact formulae replacing (2) and (3) are
known and in some cases (2) and (3) are exact (c¢f. [1], pp. 100 and 118).
The question of approximation is beyond the scope of this paper and
all the formulae derived in the sequel will be strictly equivalent to (1),
(2) and (3) respectively.

§ 2. Choosing parameters of a sequential rule. Usually the first step
in fixing the rule (1) is the selection of four parameters p,, p,, a, . This
is a correct way of acting from the point of view of a mathematician
but it means that the whole burden of selection is put on the practician
who is invited first to fix his hypotheses, i.e. to select p, and p,, and
further to fix the related probabilities of errors a and f. The practician
is often advised to take into account losses and to minimize them by
a suitable choice of the four mentioned parameters but applying this
advice would require some arbitrary probabilistic assumptions, a rather
cumbersome computation and — what is the worst — an economic anal-
ysis involving data that are usually incomplete.

In practice the a and f values are chosen first: in 99 out of 100 cases
some standard values, say a = 0.06 and g = 0.10 are selected. The
second step consists in fixing p, and p, according to some previous ex-
perience in similar conditions. Next, the expected sample size for p = p,
and/or p = p, is checked; if one finds oneself to be not rich enough or
able to spend more, one alters the p, value.

I am afraid that this picture will be a little disappointing to a the-
oretical mathematician but nevertheless it is fairly realistic.
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What I propose here is to reduce the number of arbitrary param-
eters and to concentrate on such a set of parameters that has a direct
interpretation in the practician’s language.

Let us first examine the formula (1). It depends on 4 parameters
DPos P1y 4oy B Dut it has only 3 degrees of freedom joined with 3 constants:
log B/log (R/K), logA/log(R/K) and logK/log(R/K). If we agree to add
one constraint, e.g. a = f (discussion of this condition will be deferred
to the end of this paragraph) there remain but 2 degrees of freedom.

Of course this does not mean that any two parameters will define
unambiguously the rule (1). For instance, p, and p, and the condition
a = f lead to an infinity of rules (1). On the other hand we will show
(§ 3) that the rule (1) is determined if one takes as parameters p and 7,
where p is the unique root of the equation L(p)—1/2 = 0 and % is the
expected sample size if p = P.

The notion of p is not new. In statistical quality control 7 is often
called “indifference quality” and has been known at least since 1948
(cf. [2]). Speaking more generally, every test on a pair of hypotheses
leads eventually to a decision in favour of one of two courses of action;
if p = p, there is no preference for either course. It is much easier to
choose a single value for » than to select values for p, and p, which
without a, and f have no interpretation at all.

At first glance, the notion of 7 seems to be somewhat artificial but
happily enough in many situations encountered in practice 7 is very close
to the upper bound of the expected sample size and as such it sets the
upper bound for expected expenses.

It remains to justify the condition « = . The answer could be very
short. Any condition involving a or f (e.g. a = 0.05 and g = 0.10) or
both means choosing a subclass of all possible sequential rules; the con-
dition « = B implies that ay and 7y (see (1)) differ in the sign of the free
term only. This brings considerable simplification, e.g. formula (2) can
be put in a distinct form.

But in addition, we can ask how this condition will affect the O.C.
function. Let us fix p,, p;, a, . The O.C. function is now defined by (2);
let its graphical image be represented by the heavy line in Fig. 2. On this
curve take a point whose ordinate is ¢ and denote its abscissa by p;.

Now take four quantities p,, p1, a, a. They define a new O.C. curve
(dotted line) which has two(!) common points with the original one:
(py, 1 —a) and (p;, a). For the ordinate f the original abscissa is p, and
the new one is p;". In most practical situations a and g are small and under
this assumption |p; —p,| is much smaller than p,. Even if L = 1/2, the

(*) There are also two points (0, 1) and (1, 0) that are common for all sequential
rules regardless of the values of the parameters.
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abscissae of both curves — the original one p» and the new one p'’ — are
alike.

For instance, taking for parameters of the test p, = 0.05, p, = 0.10,
a = 0.05, § =0.10 we have p, = 0.1099 and p = 0.0745; taking for
parameters p, = 0.05, p; = 0.1099, a« = f = 0.05 we obtain p; = 0.10077
and p’’ = 0.0765. Thus the difference |p,'—p,| is negligible and the diffe-
rence |p’’'—p| is very small.

L(p)*
1

Y
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\
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o Py i

Fig. 2

The computed differences are partly due to the fact that formula (2)
is not exact but the essential reason is that the sequential ratio test is
not uniformly most powerful [1, p. 101].

§ 3. Introducing parameters p and %. Denote the common value
of a and # by v and put (1—v)/y = C. Hencein (1), (2),(3) A =C, B = C-!
and (2) can be written in the form

1—K" ch—1

(4) P=p g L= g

If b = 0 the expressions (4) are undefined; de I’Hospital’s rule gives

the true value L =1/2 and

log K
log K —log R '

(5) P =

Since L(p) is a decreasing function p is the unique root of equation
L(p)—1/2 = 0.
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From (4) we obtain dL/dh and dp/dh and eventually

dL 1 0 (Ch+0—h_2)(Rh_Kh)2
— = log( ———- - - — —= _— ——
dp 7 (C"—C " [(RK)*(logR—log K)+K"log K — R*log R]

This expression is undefined for p = p, h = 0. Using de I’Hospital’s
rule one finds

iL | log K —log R
(6) el 1lo C—L 8L _ n
dp I, log Klog R
which together with (5) gives
11
(7) M = —— °89
2p logR
From (5) and (7)
logC logC
(8) logR = g_ , logK = — —L_—.
2mp 2m(1—p)

Substituting (8) to the right sides of ay and ry (see (1)), and re-
placing 4 by ¢ and B by C~' we have

(9) ay = —2mp(l1—p)+pN, ry=2mp(1—p)+pN.
From (3) and (8)
= 1—-2L
(10) N =2mp(1—p) »Wﬁéz_’l.
P—0r

Substitute now in the right side of (10) p by p, L(p) by 1/2, and in
the left side N by m. Using once more de ’Hospital’s rule we get

n = 4m*p(1—7p), whence
(11) 2m = ]/%
p(1—p)
From (9) and (11)
(12) ay = —Vp(1—p)r+pN, ryv=Vp(1l—p)m+pN.
Now denote two constants

(13) a:l/l_, bzl/_l__;ﬁ_
1—p)m p7

and a new variable

(14) r=—_—07-



58 J. Oderfeld

From (4), (8), (13) and (14)

. x®—1
(15) P= g
From (10), (11) and (14)
(16) ¥ = vVad_pmr 1
= —P) 7 —
P I e =

The formulae (12), (15) and (16) are the sought solution. They de-
pend on two parameters p and 7 only.

Now the derivation of the formulae can be forgotten together with
the hypotheses and with the test. There remain two courses of action:
the first one has to be followed if 7' <C ay and the second one — if T' > ry,
where ay and ry are defined by (12); if neither of these two inequalities
holds the sequential procedure has to be continued. Formula (15) gives
the probability that eventually the first course of action will be followed
and formula (16) the expected sample size.

§ 4. Miscellaneous remarks. Extremal values of the function N = N (p)
defined by (16) can be found from the necessary condition dN/dp = 0
which leads to the equation

- dp  2(p—p)
10 dr  1—a? =0
where
' —1
P = 01
and
dp 2t

. - w—a —a __pb
s~ (1) (a+4-b)w ax ba’).
Solving the equation (17) is in general a very timeconsuming opera-
tion but this is not necessary in many cases encountered in practice.
Namely if p is small (e.g. not exceeding

TABLE 1 a few per cent) and % is great (e.g. not
_ - _ less than a few hundred) then the func-
" P Nmax/n tion N (p) has exactly one maximum and
200 0.02 1.0210 the ratio N,.x/% is very near to 1 so .that
400 0.04 1.0047 7 can be interpreted as a good approxima-
1000 0.04 1.0018 tion of Np,.. Some examples are brought

together in Table 1.
Selection of parameters » and = has to be based on non-mathemat-
ical reasons (see § 2). However, the discrimination power of the sequen-
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tial procedure could also be helpful. As a simple measure of that power
one may take the ratio (1/2m)/p (see Fig. 3). From (11) and (13) it is easily
seen that this ratio equals b. It
Lip) 4 seems that b should be of the order
of 1/4.

It is worth mentioning that
the smallest sample size permitting
to take the first course of action is
Y 4 [1/a+1]; no item in the sample

should then be a “success”. The
smallest sample size permitting to
take the second course of action is
» [1/b+1]; every item in the sample
P 41/2m' P should then be a “success”.
o This is easily found from (1),
(12) and (13).

Irig. 3

§ 5. An example. This paper is a by-product of a study on optimiza-
tion of machines in the non-linear case with a random feasible range.
At a stage of this study I had to check the probability p that a random
range does not include a certain fixed point and this procedure had to
be repeated for a few hundred points. By means of a digital computer
the realizations of the random range were generated and the number 7'
of “successes” (the range did not include the point) in N consecutive
trials recorded. This procedure was continued until the accumulated
record T, N permitted to accept the point in question as a feasible solu-
tion or to reject it.

Technical analysis led to p = 0.04, and consideration of involved
costs of running the computer suggested taking n = 400.

From (13) a = 0.010208 and b = 0.245 were found and the discrim-
ination power characterized by the value b was considered satisfactory.
Further, the foimulae (12), (14), (15) and (16) were used to find

ay = —3.9194+0.04 N, 7y =3.91940.04 ¥V,

L

X = -

1—-L'

20010208 _ 1
P = " emss 17
— 1—x 1
N = 3.919 .

1+x p—0,04

The smallest sample size giving right to recognize the point as a fea-
sible solution was found to be 98 (only successes), and to reject it — 5
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(no successes at all). The upper bound of the expected sample size was
found to be 402 (see Table 1).

Of course, only the formulae for ay and ry had to be put into the
computer programme.
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PRZYCZYNEK DO ANALIZY SEKWENCYJNE]J
STRESZCZENIE

Praca dotyezy analizy sekwencyjnej Walda, stosowanej do weryfikowania
hipotez prostych o wartosci frakeji p jedynek w rozkladzie zero-jedynkowym.

Zwykle ustala si¢ najpierw hipotezy H,: p = p, i H,;: p = p, oraz prawdo-
podobienstwa « i f bledow pierwszego i drugiego rodzaju. Ta czwoérka liczb deter-
minuje regule postepowania (1), funkecj¢ operacyjno-charakterystyczna (2) i funkeje
oczekiwanej dlugosci badania (3). W pracy przytoczono (1), (2) i (3) w postaci zna-
nych aproksymacji.

Nastepnie wyjasniono powody, dla ktorych w praktyce wybor czworki para-
metrow p,, py, «, p jest klopotliwy. Zwrdocono uwage, ze (1), (2), (3) maja tylko 3
stopnie swobody, mimo Ze wystepuja tam 4 parametry. Umotywowano dodatkowy
wiez « = fi i wprowadzono 2 nowe parametry p, n, ktorych sens jest dla praktyka
wyrazny. Parametr p oznacza wartosé obojetny frakeji p, przy ktorej funkeja ope-
racyjno-charakterystyczna przyjmuje wartos¢ 1/2. Parametr »n oznacza oczekiwang
dlugosé badania, gdy p = p. Pokazano, ze w pospolitych warunkach n prawie nie
rozni si¢ od gornego kresu oczekiwanej dlugosci badania.

Wprowadzono bardzo proste wzory (12), (15) i (16), ktore zawieraja tylko 2
parametry p i n i ktére catkowicie opisuja regule postepowania i jej konsekwencje
matematyczne. W interpretacji nowych wzoréw nie ma mowy o testowaniu hipotez;
uzywa sie¢ tylko znanych poje¢ z teorii decyzji.

Podano przyklad zastosowania do optymizacji maszyn w przypadku nielinio-
wym z obszarem losowym.



A contribution to the sequential analysis 61

A OJEPO®EJ b/ (Bapmasa)

K BOIIPOCY O NOCJIEAOBATEJIBHOM AHAJIM3E

PE3IOME

Hacrosamasn padora KacaercdA IocjefoBaTelbHOro aHaidusa Baampma, npume-
HSIeMOr0 NpHU NMpOBepKe NMPOCTHX TMIOTE3 O YacTOTe p MOABIEHWUs €JMHUIL B pacmnpe-
JeJeHUN TUINA HYJb-OUH.

OOBIYHO CHAYAJIA YCTAHABIMBAKTCA runotessl Hy: p = p,u Hy: p = p, a TaKxe
BEPOATHOCTH « M [ MOTPeHlIHOCTeil MEepBOro M BTOPOro pofa. Ira 4eTBEpKa vuced,
onpejenderT mpabuio Homefienus (1), omepaTnBHYH0 XapaKTepuUCTHKY (2) M QyHKIHIO
O3KU7aeMoii TPOJOMKUTEIbHOCTH uccienosanua (3). B pabore dopmyas (1), (2)
n (3) pansl B BUJE M3BECTHHIX aNNpPOKCHMALMM.

N3naraloTca NPHYMHBL, 10 KOTOPHIM TNpHUMeHeHHe B NMpaKkTHKe 4YeTBEPKM mapa-
MEeTpOB po, p1» ¢, f 3aTpynHuteabHo. O6pamaerca BHMMaHue Ha To, uto (1), (2), (3)
HMET TOJNBKO 3 CTeMeHn cBOOOJB, HECMOTPA HA TO, YTO BBHICTYNAKIOT TaM 4 mapamMerpa.
Taérca moTuBMpOBKA N00aBOUHON CBA3M « = f M BBOJATCA 2 HOBHIX IapaMmeTrpa p, 7,
CMBICT KOTOPHIX JJ1fl MPAKTHKA sceH. Ilapamerp n oGo3Hayaer HeHTpalbHOE 3HAYEHME
OTHOCUTEJILHOTO KOJIMYECTBA p, IPU KOTOPOM OINEpATHBHAA XAPAKTEPUCTMKA NPU-
HuMaer sHavennme %. Ilapamerp m 0603HAuYaeT NPOMOIKUTEILHOCTh MCCIELOBAHNSA
npu p = p. IloxasaHo, uTo B OOBIYHBIX YCHOBUAX 7 IIOYTH HE OTIMYAETCH OT BepXHEro
npejena OMUAAEMONl MPOMOKUTENBHOCTH MCCIE 0BAHNUA.

Beogarca oueHsb mpocteie Gopmyast (12), (15), (16), kKoTopsle cofepHaTr TOIbBKO
ABa mapaMeTpa p M % M KOTODHIE NMOJHOCTHIO ONMCHIBAIOT NMPABUJIO MOBeleHUA M ero
MaTeMaTHiecKkne MociIcAcTBHA. B uHTepnperanuu HOBHX QOPMYT HeT peuyu O TECTH-
pPOBAaHMH THUIOTE3; YMOTPe(JIAeTCA TONLKO M3BECTHHE MOHATHA U3 TeOpNU pemleHIil.

JlaéTca npuMmMep MNPHJIOKEHUA K ONTUMHU3AUUH MAUIMH B HEJMHeliHOM ciyuae
Co cayuyaitHoit o0jaacTbio.



