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WITHOUT NILPOTENT ELEMENTS
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In what follows* A stands for a (not necessarily associative or commu-
tative) ring satisfying the following property: '

(a) A has no nilpoient element and a product of elements of A which
18 equal to zero remains equal to zero no matter how its factors are associated.

In this paper, as expected, “nilpotent” means “non-zero nilpotent”.
Also, for the sake of brevity, we refer to the second property in (a) as:
zero-product-associative.

In [1] it is shown that (a) is equivalent to:

(a') A has no milpoteni element and a product of elements of A which
8 equal to zero remains equal to zeéro mo matter how its factors are associated
or permuted.

Remark 1. In [4] it is shown that an alternative ring without nil-
potent elements satisfies (a’). Therefore, whatever is implied by (a) or (a’)
holds true for the case of alternative rings without nilpotent elements.
In view of [b], the same applies for the case of right alternative rings
without nilpotent elements and of characteristic not equal to 2.

In [1] it is shown that A is partially ordered by <, where, for any
elements # and y of A,

(1) <y if and only if ay = 22.

In what follows any reference to order is made in connection with
the partial order given by (1).
As shown in [1], if (#;);; is a subset of A such that supa; exists,
i

then, for every element r of A, suprz; as well as supa;r exists and
1 i
(2) rsupw; = supry; with ¢el,
< $
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whereas .

(3) (supz;)r = supw;r with ¢el.
[ i

A subset M of A is called a mawimal multiplicative system (of A)
not containing 0 if M is closed under multiplication and 0 ¢ M and,. for
every subset N of A, whenever N is closed under multiplication, M < N
and M # N imply 0 € N.

Definition. An element a of the ring A is called an atom of A if a
belongs to one and only one maximal multiplicative system (of A) not
containing 0. Moreover, A is called atomic if for every non-zero element r
of A there exists an atom a such that a < r.

Following [2] and [3], a subset S of A is called orthogonal if vy = 0
for every two distinct elements # and y of A. Furthermore, A is called
orthogonally complete if sup S of every orthogonal subset S of A exists.

Remark 2. In [1]it is shown that the ring A is isomorphic to a sub-
direct product of rings without zero divisors. As shown in [4], the same
applies to alternative rings without nilpotent elements. We shall prove
the following result:

THEOREM. The ring A is isomorphic to a direct product of rings without
zero divisors if and only if A is atomic and orthogonally complete.

Also, in view of Remark 1, we have
COROLLARY. An alternative ring A without nilpotent elements is iso-

morphic to a direct product of alternative rings without zero divisors if and
only if A is atomic and orthogonally complete.

The Theorem is an immediate consequence of two lemmas which
we are going to prove.

LEMMA 1. Let (D;);.x bée a seét of rings D; without zero divisors. Then
the direct product

D =[]

ieK

i8 a not necessarily associative or commutative ring which has property ().
Moreover, D is atomic and orthogonally complets.

Proof. For the sake of simplicity, we assume that K is an ordinal
number and, as usual, we identify every element of D with a sequence

(of type K)
(...d‘...) with d‘ED‘-

Algo, (instead of 0;) we often write 0 for the zero of evéry ring D,
a8 well as for the zero of D, and we denote by (0 d; 0) an element of D
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all coordinates of which, except perhaps the i-th coordinate, are equal
to 0.

The fact that D satisfies property (a) is easily verified.

For every ¢ € K, it is readily seen that the set

(4) M@G) ={...d...) | & # 0 and d, e D}

is a maximal multiplicative system (of D) not containing 0. However,
not every maximal multiplicative system (of D) not containing 0 is neces-
sarily equal to M (¢) for some ¢ € K. For instance, such is the case if D
is an infinite direct product of 2-element fields.

Next, we observe that an element & of D is an atom if and only if

(5) a =(0d, 0) for some d; #0.

Clearly, no atom of D can possibly have two non-zero coordinates,
since then it would belong to two distinct maximal multiplicative systems
not containing 0 and of type (4). On the other hand, a as given by (5)
is an element of M (¢), as given by (4). Moreover, a cannot belong to
2 maximal multiplicative system M (of D) not containing 0 and such that
M = M(i). Indeed, otherwise,

(..0;...)eM and (...0,...):(0 d;0)=0eM

which is a contra,diction.'
Obviously, if (... d;...) is a non-zero element of D with d; # 0,
then, in view of (1), we see that

0d0)<(...d ...).

Thus D is atomiec.

Finally, let T be an orthogonal set of atoms of D. Since D, has no
zero divisors, in view of (1), the least upper bound of 7 is an obvious ele-
ment of D. But then it follows that every orthogonal subset of D has
a least upper bound. Thus A4 is orthogonally complete.

LEMMA 2. Let the ring A be atomic and orthogonally complete. Then A
i8 isomorphio to a direct product of rings without zero divisors.

Proof. As shown in [1], if M, is a maximal multiplicative system
(of A) not containing 0, then A —M, is a completely prime ideal of A
and the quotient ring A /(4 —M,) has no zero divisors. Moreover, in [1]
it is shown that, in view of property (a), every non-zero element of A
belongs to a maximal multiplicative system (of A) not containing 0. Thus,
if (M,),z is the set of all maximal multiplicative systems (of 4) not
containing 0, then

N (4—M;) = {0},

heH
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which implies that A is isomorphic to a subdirect product of the quotient
rings A/(A—M,) with b € H. From this (in view of the definition of an
atom) it follows that the set of all atoms a,; of A such that a;; € M, to-
gether with 0 forms a ring 4, without zero divisors, i.e., for every h € H,

(6) A, = {ay;] a5; is an atom and a,; € M,}U{0}

is a ring without zero divisors.

Let (Ax)ney be the set of all A,’s such that 4,— {0} is not empty
(2 ocase where some of A, — {0} are empty is provided by any infinite
Boolean algebra). To prove the lemma, it is enough to show that A is
isomorphic to the direct product of 4,’s with k € N, i.e.,

(7 4 = [] 4,.
heN

Obviously, ( | A4} — {0} is the set of all atoms of 4. Thus, an atom
heN

of A is an a,; with h € N and ¢ € I(h) for some index set I (k). From the
subdirect product decomposition of A and the definition of an atom it
follows that

(8) apa; =0  if and only if h # k.
Let P as well as @ be an orthogonal set of atoms. We show that
(9) P =@ if and only if supP = sup@.

Clearly, it is sufficient to prove that supP = sup@ implies P = @
Assume the contrary and let, say, a;; € P and a;; # Q. But then from (2)
and (8) it follows that

63 (SUpQ) = ay(supP) = a3,

which, again by (2) and (8), implies a;; = a;; for some a,; € @, since 4,
has no zero divisors. Consequently, a,; €@ which is a contradiction.
Hence (9) is established.
Next, for every element x of A, let A (), given by
\

(10) A (z) = {ay,, Gpjy Gypy - o}

denote the set of all the atoms of A which are less than or equal to 2.
From the subdirect decomposition of A and (1), and the fact that for every
h € N the subring A, has no zero divisors it follows that no two distinct
atoms appearing in (10) are elements of the same A,. Thus, 4 (») as given
by (10) is an orthogonal subset of A. Based on the orthogonal complete-
ness of A we show that, for every element = of A,

(11) x = sup A (z),
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where 0 = sup @. Since every atom appearing in (10) is less than or equal
to x, we sec that sup 4 (x) < «. Assume on the contrary that  # sup A ().
But then

supA(r) <2 and z—supd(z) #0.
Since A is atomice, there exists an atom a such that
a < v—supd(z).

Since supA (r) < #, from (1) and the subdirect product decomposi-
tion of A it follows that a € A(x). Thus, a <2 and &< supA4 (z). But
then, in view of (1) and (2), we have

0 5 a* = a(z—supA(s)) = ar —asupA(2) = a*—a? =0,

which is a contradiction. Thus, (11) is established.
Finally, let f be a function from A4 into || A4, defined by
heN

f(@) = A(@)U{0, 10, = 0 and te (N —H)},

where A (x) is given by (10), and the subset H of N is defined by ¢ € H
if and only if a,, € A (2) for some u € I(?). From (9) and (11) it follows that f
is one-to-one and onto. From the subdirect product decomposition of
A it is readily seen that f is an isomorphism. Hence (7) is proved.
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