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The Ritt order of the derivative of an entire function
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Since the sequence {a,} determines the function completely, it should

in principle be possible to discover all the properties of the function by

examining the coefficients. Thus the order g is given by (for references

see [2], pp. 9-12)
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From the above it follows that the order of a function is the same
as the order of its derivative. The same remark holds about the type
of a function of finite non-zero order.

If the entire function f(2) (¢# = z+4y) is defined by an everywhere
absolutely convergent Dirichlet series

(3) D) 0,0xp(An8) (0 < A < Anyy—>00)
and m(z, f) = lu.b. |f(x+iy)|, then
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is called the Ritf order of f(2) and for 0 < ggy < oo the type Tk, has been
defined as
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Improving upon a theorem of Ritt, it has recently been proved by
Azpeitia ([1]) that if
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On the other hand, it is also known ([4], p. 71) that if
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then
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Thus, subject to the restrictions (5) and (7) respectively we have

9 ORt = @R/
and
(10) Try = Try.

The purpose of this note is to show that (9) and (10) are true in gen-
eral. We shall in fact prove that for a function of finite Ritt order

(11) logm(z, f')~logm(z,f) a8 x—>oo.
It is known ([2], p. 13) that

M(2r, f)
==0n

M(r’f)r V(O)l < M(T, fl) < ,
and our proof of (11) depends on obtaining an analogous relationship
between m(x, f) and m(z, f').

Now let f(z) be analytic in the half plane # < X and defined there
by an absolutely convergent Dirichlet series (3). Then logm(x, f) is ([3])
an increasing downward convex function of z for # < X. For Rez,= z,
<z < X we have

(12) 1(2) = [ 1'(2)dz+ f(zo) -
2o

Let Imz, = y and consider the integral along the straight line joining z,
and z. If m(z, f) is attained at a finite point of the vertical line of ab-
scissa # then we can choose z such that |f(z)| = m(z, f). If, however,
m(z, f) i3 not attained at a finite point of the vertical line Rez = o, we
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can still find a point 2z of the line such that |f(2)| > m(z, f) —¢ for a given
e > 0. Hence it follows from (12) that
(13) m(z, f) —e < (@ —x)m(z, ')+ |f (%) .

On the other hand, let z* be a finite point of Rez = £ < X for which
|f'(z*)| > m(x, f')—¢'y, & > 0. By Cauchy’s theorem on the derivative
applied to the point 2* and the circle I™: |z-—z‘|'< 6 < X —Rez*, we get

(14) m(z, f)—¢ <| 1 /() dz g%(maxjmum of |f(2)jon I')

omi J (22"

<zml@ts, .

Hereafter, let f(z) be entire and of finite Ritt order ggp;. Since
logm(z, f) is an increasing convex function of z, we have

(15) logm(z, f) = logm(z,, f)+ [ w(t)dt,

Ze

where ¢, < z and w(t) is a non-decreasing function of ¢. If ¢ is a fixed
positive number then for sufficiently large z

z+2

[ w@t)yat <logm(z+2, f) < exp{(z+2) (ogs+¢)}

and since w(t) is non-decreasing, we get

2w(z) < exp {(z+2)(ers+e)} .

As ¢ is arbitrary, we can even write

(16) w(w) < exp{z(ers+£)}

for sufficiently large .
Equality (15) then gives
T+

logm(z-+ 4, f) = logm(a, f)+ [ w(t)dt,
&
where the integral is smaller than

exp {(z+6)(er,s+¢)}9,
and if we take

0 = exp{—z(ors+¢)}
which tends to zero with 1/z, we obtain

logm(z+ 6, f) < logm(z, f)+e,
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provided o is sufficiently large. Putting this value of § and the corre-

sponding value of m(x+4d,f) in (14) we see that for every ¢ > 0, and
sufficiently large z

(17) m(x, f') < m(z, /)exp {z(er,s+¢)} .

The inequalities (13) and (17) show that, for every entire function
of finite Ritt order, .

logm (s, ') ~logm (w, ) .
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