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Integraiion of infinite systems of differential inequalities

by W. Mrax and C. OLECH (Krakéw)

In this paper we investigate infinite systems of ordinary differential
inequalities of the form

Degy(t) < fi(ta i)y @ao(l)y -ovs @alt), ) ’ 1=1,2,..,n,..

Dy(t) stands here for any of the Dini derivatives of the function y(?)
at the point ¢. The first section of the paper deals with some simple linear
differential inequalities. The second section concerns the non-linear case.
We there introduce the right-hand maximum solution of a countable
system of differential equations.

1. For the sake of clarity we will consider, in the following, inequalities
with right-hand upper derivatives. Remember that the right-hand upper
derivative denoted by D,y(t) is defined by

R0+ h

It can be remarked that our theorems remain true if D, is replaced by
any other Dini derivative.
We start with the following fundamental lemma:

LeMMA 1 (see [2]). Let 2 be an open subset of the n-dimensional space
of points (Yy, ..., Yn). Suppose that the functions gi(t, ¥y ..., ¥yn) (¢ =1, ..., 1)
are continuous on {0, a) X2, and satisfy there the condition:

(W) If yp <yx for ki then g, Y1y o5 Yi-1y Yiy Yit1s -y Yn)
L iy Yry vy Yio1s Yiy Yit1y vory Yn)-
Let the continuous functions @,(t), ..., pp(t) satisfy in (0, a) the tnequalities
Dipi(t) < gilt, @u(t)y ooy @al®)),  i=1,...,m.

Suppose that the right-hand maximum solution w,(t), ..., wa(t) (1) of the

(*) For the definition and construction of the extremal solutions of finite systems
of differential equations see [2].
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system y; = gi(t, Y1,y .-, Ya) (1 =1, ..., n) ewisis in <0, a) and p;(0) < wy(0).
Then @i(t) < wi(t) for i =1,...,n and t€ (0, a).

COROLLARY. If @it) (¢ =1,...,n) satisfy in <0, a) the inequalities
D.gu(t) = gilt, @u(t)y oer @n(t)) (3 =1, ...,m) then @t) >7{t) where =,(t)
are the components of the right-hand minimum solution of the system
Yi = gi(ty Yoy -y Yn) (=1, ..., n) such that ¢;(0) > 7:(0).

Consider an infinite matrix {ay}, ¢,k =1,2,3,..., with real

constants a;.. Denote by (r;},.-g,(t))ﬂ the fundamental matrix of the system
of differential equations

n
Notice that Y 5(0) =1. We will prove the following lemmas

8=1

LEMMA 2. Suppose the elements of {ay} satisfy ax >0 for © -+~ k.
Assume that we are given a sequence of non-negative functions {yx(t)} which

o0
are continuous on <0, a). Let the series D azwi(t) be convergent for every
k=1

i=1,2,.. and every te (0, a). Suppose that

() D aapu®) < Dawilt),  i=1,2,.., te(0,q)
k=1

and 1 < y(0) for ¢ =1,2,... Under our assumptions we have
n
D) walt) < wilt)
8=1
for arbitrary n and i, te€ {0, a).

Proof. It is a simple matter to verify that the functions q’ii(t) =) ﬁa(t),
§=1
1 =1,2,..,n, satisfy the system

n
n, n .
ui(t) = 2, anur(t), ¢=1,2,..,n
k=1

and 34(0) = 1. On the other hand a; >0 for ¢ # %k and wx(t) >0 for
t,k=1,2,.. It follows then from (1) that

n
2 aapi(t) < Dywi(t), $=1,2,..,n

k=1
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and consequently

n

D aalyult) — udt)] < Dalypdt) —wlt)], i=1,..,n.

k=1

But 0 < y;k(O)—'Zk(O), k=1,..,n The assertion of the lemma follows
from the last differential inequalities and from the above corollary.
Lemma 2 generalizes certain result of [1] (lemma 3, p. 249) where

appeared the assumptions: a; > 0 for i # k and Y ay = 0 for each i.
k=1
However, the above equality shows that we can take in our lemma
wi(t) = 1.
THEOREM 1. Let {an} be an infinite matriz of real constants such that

(2) agx =0 for T#Ek.

Suppose that there exists a sequence {yi(t)} of non-negative functions which
are conltinuous in {0, a) and satisfy

3) ;a,-k.pk(z)gz‘)m(t) for i=1,2,., O0<t<a,
1<p(0) for i=1,2,..

Suppose we are given a sequence {p;(t)} of functions, which are continuous
o0

on <0, a). Assume that for every i the series D a;.px(t) is almost uniformly
k=1

convergent on <0, a). Suppose that the functions @;(t) satisfy the following
inequalities

@) Digit) < ) angalt), i=1,2,.., 1e<0,a),
k=1

(0) <0 for 1=1,2,..
Let us assume that

(5) on(t) = max | D aupdt)] >0

k:I, e, T 8=n+1

almost uniformly on <0, a).
Under our assumplions the inequalities

@i(t) < 0
hold for i =1,2, ... and t e {0, a).

(-]

Proof. Given a fixed n denote by A'(t) = > a;u@w(t). Take now the
k=n+1
system

y{-=2a,rky,,+l?(t), i=1,...,'n

k=1
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and denote by y,(?), ..., ¥a(?) its solution such that y;(0) = 0for: =1, ..., n
Observe that (4) implies

Digpilt) < D auqul®) + 42(1),  @0) <pl0), i=1,..,m.

k=1

Applying (2) and lemma 1 we thus get that
pt) < yi(t) for ¢=1,..,n, O0<t<a.
On the other hand

t n

(1) =f Z'Zik(t—r)l;:(t)dr.

k=

-

Hence

t n
o) < [ Dl ualt—1) ) dr, i=1,.,n.
0 k=1

Notice now, that by the corollary '{Zm(t—r) >0 and obviously A7)
< o™(t). Therefore

t =
®i(t) <f Z'I,;ik(t—t) on(t)dT .
o k=1

But (3) and lemma 2 imply that

n

D ualt—7) <pli—7), i=1,..,n.

k=1

We bave then
i) < fy),-(t—r)an(r)dr , for i=1,..,n.
0

The limit passage in the above inequalities together with (5) proves the
assertion.

2. This section deals with-non-linear inequalities. We assume in the
following that the functions fi(?, ¥,, ¥5y <.y Yn, ...} (¢ =1, 2, ...) are defined
for t € {0, a) and for arbitrary real-valued sequences % = {y:}. They are

continuouns in the following sense: for each ¢, if for every %k, v% — v
—>00

and t"::ot then fi(%", Y1, Yzy ey Yny -oo) >filty Y1y Yzy ey Yny -..). The following

condition generalizes the condition (W) of lemma 2:

(C) for every ¢, if 7, <y for k 5 ¢ then
flty Uy Yoy ooey Gimry Yty Girry o) < Jilly Yy Yoy ooy Yimas Yis Yitay oo -
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We begin with the following

THEOREM 2. Suppose that the functions fi(l, Y1, ¥sy ...y Yny...) (1=1,2,...)
satisfy (C). We assume that there exist finite constants M; > 0 such that

(6) Ifi(ty Y1y Yay ooy Yny o) < My t=1,2,..

for te (0, a) and y = {yx} arbitrary. Suppose we are given a sequence of
functions {pi(t)} which are continuous on {0, a) and satisfy on (0, a) the
following imequalities

(7) B-l-‘Pi(t) < fi(ty P1(t) 5 @alt)y -y a(?), "-) .

Then there exists the solution {wi(t)} in (0, a) of the infinite system
(8) wi(t) =fi(t’ wy(t), wo(t), ..., wall), ) y t=1,2,..

such that wi(0) = ¢;(0) and

(9) oi(t) < wi(t) for te{0,a) and 1+=1,2,..

Proof. Suppose that the continuous functions y;(¢) satisfy on (0, a)
the inequalities

(10) 1—)+V’i(t) < fi(tr vi(t), wa(t), -5 wall), ) , 1=1,2,..

Let us consider the following differential equation

(11) Yy =Fit,y) = ft'(tr (), wol®)s -y wio1(t)y ¥, Yia(t), ) .
Obviously F; is continuous in (¢, ). On the other hand (10) implies D,y(t)
< Fi(t, yi(t)). Hence by lemma 1

(12) pi(t) <wi(t) for te(0,a)

where y;(f) is the right-hand maximum solution of (11) such that ;(0)
= 9;(0). This maximum solution exists in the whole interval <0, ). This
is an immediate consequence of the boundedness of f;. We have also

(13) 2 i) = Filt, yi(0)

By (12), (13) and condition (C) we get
d .
(14) ¥ () <l vi®), wi(), s vi(0), ), i =1,2, .
We see now that to every sequence {yi(t)} of functions which satisfy (10)
there corresponds a sequence {yi(t)} such that the conditions (12), (13)

and (14) hold. We have just to do with a transformation law which maps
v = {yx(?)} on the sequence y' = {yi(t)}. Denote this transformation by F.
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Hence Fy =y!'. It follows from (14) that we can apply F to y', or more
generally, that the sequence y"*+1 = Fymis well defined. It is easy to prove
that

(15) Y1) < i)
and
d - n— n n~
(16) VT =filt, ¥17(0), ey L), ¥ (0), YRR (D), )
The inequalities |y;(t)| < Mt -+ lpi(0)], d%w?(t) < M; show that for a fixed ¢

the sequence {y;(t)} is equibounded and equicontinuous on every compact
contained in <0, a). Hence, the limits lim p7(?) £ wy(t) exist and the

convergence is almost uniform on <0, a).nIt follows from (16) that wi(t)
= fi(t, wy(1), wy(t)y ..., wy(l), ) By (15) we conclude that w;(f) < wy(t)
for te (0,a) and 7 =1, 2, ... Then assertion of our theorem follows if
we put y;(t) = @i(f).

The supposed inequalities |f;| < M; may be replaced by the following
assumption: |fi(t, ¥y, ..oy ¥iy o) < Gi(2, |Y4l), ¢i(f,2) are continuous and

for an arbitrary initial value g‘}, > 0 the right-hand maximum solution

of equation ¥’ = gi(t, y) passing through the point (0, ;i) exists in the
whole interval (0, a).

It is easy to see that the method used in the proof of theorem 2 does
not need the assumption that the considered systems are countable.
Hence, in theorem 2 the countable systems may be replaced by an arbitrary
infinite systems. However, in the case of countable systems theorem 2
can be proved by using following arguments: suppose that the sequence
{p«(t)} satisfies (7) and consider the finite system

(A7) y: =Fi(ty Y1y oors Yn) = filt; Y15 Yoy vy Yny Prta(l)y Pasa(t), o)
1=1,2,...,n.

Condition (C) implies that F; satisfy contition (W) of lemma 1. Denote

by c’fil(t), ey cf),.(t) the right-hand maximum solution of (17) such that

a’;,-(O) = @4(0). The inequalities (7) imply the following inequalities
E+¢i(t) < F?(t; (1), '--79”1&“)) y t=1,.,n.

Hence, by lemma 1

(18) oi(t) <wft) for i=1,2,..,mn, te{0,a).

Observe that by (C) and (18)

13+q7,,+1(t) < fn+1(ty z&l(t)’ y) ::),.(t), Pnt1(t)y Pria(t), )
= FRli(ty &u(0), - @alt), Pnsa()) -



Integration of infinile systems of differential inequalities 111

This inequality and the definition of 3),-(1,) imply by lemma 1

. +1
o) <wi(t), P=1,eyn, @urr(t) < Ousalt).
Arguments similar to those used in the proof of theorem 2 show that the

limits lim cﬁi(t) are the components of a solution of system ¥; = fi(t, v,,

n—>00

weey Yny +-.) and obviously ¢;(f) < hm w,(t)

THEOREM 3. Suppose that f; satzsfy (C) and |fi| < M; < + oo. Then
for every sequence gj = {,431'} there exists in <0, a) the right-hand mazimum

solution {w;(1: g(})} of the system
(19) Yi=Fty Yyy oy Yny o)y t=1,2,...,m

such that wi(O:g‘;) = 3(},-. If the functions @;(t) are continuous on <0, a) and
satisfy on (0, a) the inequalities

1_)+9’i(t) < fi(t’ P1(t)y Pa(t)y vy @all), .. ) y t=1,2,..

then @i(t) < wift: @(0)) (p(0) = {g:(0)}) for i =1,2, ... and t €0, a).
Proof. The functions y;(f) = —M,-t—i—g(},- satisfy (10). It follows from

theorem 2 that there exists on (0, a) at least one solution {w;(?)} of (19)

such that wy(0) = go/,-. Denote by £; the set of ¢-th components of solutions

of (19) passing through (0, y';). We define now

(20) wi(t: ) =5up (i)

The functions w € £; are equibounded and equicontinuous in every compact

subinterval of (0, a). We get therefore that w;(¢: go/) is continuous in ¢

on {0, a). Let {w;(t)} be an arbitrary solution of (19) such that w;(0) = g(},».
We have

wi(t) =f1‘(t7 w(t)y oey @nlt), ) y 1=1,2,..
and by (20)
(21) Wi(8) < filty @1(8: §), ory ima(l: §), 0K(E)y wisa(t: G), -oe) -
It follows from (21) that
(22) oft)<a(t), i=1,2,.., 1e0,aq)
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where o,(t) is the right-hand maximum solution of the equation
, 0 0 0
(23) Y =filty 01t y)y ey 0ia(t: y), Y, wia(t: ), o)
such that o;(0) = g‘;i. The inequality (22) holds for an arbitrary solution.
We get therefore
(24) wilt: y) < oilt)
and consequently by (20) and (C)

ai(?) < f‘i(t’ 01(t) 5 «-ey onlt), ) .
By theorem 2 there exists a solution {z;(?)} of (19) such that 7;(0) = g'},- and
(25) oi(t) < 7i(?) .

But 7.(f) < wi(t: y) and by (24) and (25) we derive t{(t) = wi(t:y). We

have just proved that {w;(t: gol)} is a solution of (19). It follows from (20)
that this solution is the right-hand maximum one. The second part of
the assertion follows easily from theorem 2 and from (20).
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