Integration of infinite systems of differential inequalities

by W. MLAK and C. OLECH (Kraków)

In this paper we investigate infinite systems of ordinary differential inequalities of the form

$$D\varphi_i(t) \leqslant f_i(t, \varphi_1(t), \varphi_2(t), ..., \varphi_n(t), ...), \quad i = 1, 2, ..., n, ...$$

 $D\psi(t)$ stands here for any of the Dini derivatives of the function $\psi(t)$ at the point t. The first section of the paper deals with some simple linear differential inequalities. The second section concerns the non-linear case. We there introduce the right-hand maximum solution of a countable system of differential equations.

1. For the sake of clarity we will consider, in the following, inequalities with right-hand upper derivatives. Remember that the right-hand upper derivative denoted by $\overline{D}_+\psi(t)$ is defined by

$$\overline{D}_+\psi(t)=\limsup_{h\to 0+}\frac{\psi(t+h)-\psi(t)}{h}.$$

It can be remarked that our theorems remain true if \overline{D}_+ is replaced by any other Dini derivative.

We start with the following fundamental lemma:

LEMMA 1 (see [2]). Let Ω be an open subset of the n-dimensional space of points (y_1, \ldots, y_n) . Suppose that the functions $g_i(t, y_1, \ldots, y_n)$ $(i = 1, \ldots, n)$ are continuous on $(0, a) \times \Omega$, and satisfy there the condition:

$$(W) \quad If \ \overline{y}_k \leqslant \overline{\overline{y}}_k \ for \ k \neq i \ then \ g_i(t, \overline{y}_1, ..., \overline{y}_{i-1}, y_i, \overline{y}_{i+1}, ..., \overline{y}_n) \\ \leqslant g_i(t, \overline{\overline{y}}_1, ..., \overline{\overline{y}}_{i-1}, y_i, \overline{\overline{y}}_{i+1}, ..., \overline{\overline{y}}_n).$$

Let the continuous functions $\varphi_1(t), \ldots, \varphi_n(t)$ satisfy in (0, a) the inequalities

$$\overline{D}_+ \varphi_i(t) \leqslant g_i(t, \varphi_1(t), \ldots, \varphi_n(t)), \quad i = 1, \ldots, n.$$

Suppose that the right-hand maximum solution $\omega_1(t), \ldots, \omega_n(t)$ (1) of the

⁽¹⁾ For the definition and construction of the extremal solutions of finite systems of differential equations see [2].

system $y_i' = g_i(t, y_1, ..., y_n)$ (i = 1, ..., n) exists in (0, a) and $\varphi_i(0) \leq \omega_i(0)$. Then $\varphi_i(t) \leq \omega_i(t)$ for i = 1, ..., n and $t \in (0, a)$.

COROLLARY. If $\varphi_i(t)$ (i=1,...,n) satisfy in (0,a) the inequalities $\overline{D}_+\varphi_i(t)\geqslant g_i(t,\varphi_1(t),...,\varphi_n(t))$ (i=1,...,n) then $\varphi_i(t)\geqslant \tau_i(t)$ where $\tau_i(t)$ are the components of the right-hand minimum solution of the system $y_i'=g_i(t,y_1,...,y_n)$ (i=1,...,n) such that $\varphi_i(0)\geqslant \tau_i(0)$.

Consider an infinite matrix $\{a_{ik}\}$, i, k = 1, 2, 3, ..., with real constants a_{ik} . Denote by $\binom{n}{u_{is}(t)}_n$ the fundamental matrix of the system of differential equations

$$z_i' = \sum_{k=1}^n a_{ik} z_k \;, \quad i = 1, 2, ..., n \;.$$

Notice that $\sum_{s=1}^{n} u_{is}(0) = 1$. We will prove the following lemma:

LEMMA 2. Suppose the elements of $\{a_{ik}\}$ satisfy $a_{ik} \ge 0$ for $i \ne k$. Assume that we are given a sequence of non-negative functions $\{\psi_k(t)\}$ which are continuous on (0, a). Let the series $\sum_{k=1}^{\infty} a_{ik} \psi_k(t)$ be convergent for every i = 1, 2, ... and every $t \in (0, a)$. Suppose that

(1)
$$\sum_{k=1}^{\infty} a_{ik} \psi_k(t) \leqslant \overline{D}_+ \psi_i(t) , \quad i = 1, 2, ..., \quad t \in (0, a)$$

and $1 \leqslant \psi_i(0)$ for i = 1, 2, ... Under our assumptions we have

$$\sum_{s=1}^{n} \overset{n}{u}_{is}(t) \leqslant \psi_{i}(t)$$

for arbitrary n and i, $t \in (0, \alpha)$.

Proof. It is a simple matter to verify that the functions $u_i(t) = \sum_{s=1}^n u_{is}(t)$, i = 1, 2, ..., n, satisfy the system

$$u_i'(t) = \sum_{k=1}^{n} a_{ik} u_k(t), \quad i = 1, 2, ..., n$$

and $u_i(0) = 1$. On the other hand $a_{ik} \ge 0$ for $i \ne k$ and $\psi_k(t) \ge 0$ for i, k = 1, 2, ... It follows then from (1) that

$$\sum_{k=1}^{n} a_{ik} \psi_k(t) \leqslant \overline{D}_+ \psi_i(t) , \quad i = 1, 2, ..., n$$

and consequently

$$\sum_{k=1}^{n} a_{ik} [\psi_k(t) - \overset{n}{u_i}(t)] \leqslant \overline{D}_+ [\psi_i(t) - \overset{n}{u_i}(t)] , \quad i = 1, ..., n .$$

But $0 \leq \psi_k(0) - \frac{n}{u_k}(0)$, k = 1, ..., n. The assertion of the lemma follows from the last differential inequalities and from the above corollary.

Lemma 2 generalizes certain result of [1] (lemma 3, p. 249) where appeared the assumptions: $a_{ik} \ge 0$ for $i \ne k$ and $\sum_{k=1}^{\infty} a_{ik} = 0$ for each i. However, the above equality shows that we can take in our lemma $\psi_k(t) \equiv 1$.

THEOREM 1. Let $\{a_{ik}\}$ be an infinite matrix of real constants such that

$$a_{ik} \geqslant 0 \quad \text{for} \quad i \neq k .$$

Suppose that there exists a sequence $\{\psi_k(t)\}\$ of non-negative functions which are continuous in $\{0, \alpha\}$ and satisfy

$$(3) \qquad \sum_{k=1}^{\infty}a_{ik}\psi_k(t)\leqslant \overline{D}_+\psi_i(t) \quad \textit{for} \quad i=1,\,2\,,\,..\,, \quad 0< t<\alpha\,,$$

$$1\leqslant \psi_i(0) \quad \textit{for} \quad i=1\,,\,2\,,\,...$$

Suppose we are given a sequence $\{\varphi_i(t)\}$ of functions, which are continuous on $(0, \alpha)$. Assume that for every i the series $\sum_{k=1}^{\infty} a_{ik}\varphi_k(t)$ is almost uniformly convergent on $(0, \alpha)$. Suppose that the functions $\varphi_i(t)$ satisfy the following inequalities

Let us assume that

(5)
$$\sigma_n(t) = \max_{k=1,\dots,n} \left| \sum_{s=n+1}^{\infty} a_{ks} \varphi_s(t) \right| \to 0$$

almost uniformly on (0, a).

Under our assumptions the inequalities

$$\varphi_i(t) \leqslant 0$$

hold for i = 1, 2, ... and $t \in (0, a)$.

Proof. Given a fixed n denote by $\lambda_i^n(t) = \sum_{k=n+1}^{\infty} a_{ik} \varphi_k(t)$. Take now the system

$$y'_{i} = \sum_{k=1}^{n} a_{ik} y_{k} + \lambda_{i}^{n}(t), \quad i = 1, ..., n$$

and denote by $\gamma_1(t), ..., \gamma_n(t)$ its solution such that $\gamma_i(0) = 0$ for i = 1, ..., n. Observe that (4) implies

$$ar{D}_+ arphi_i(t) \leqslant \sum_{k=1}^n a_{ik} arphi_k(t) + \lambda_i^n(t) \;, \hspace{0.5cm} arphi_i(0) \leqslant \gamma_i(0) \;, \hspace{0.5cm} i = 1 \,, \, ... \,, \, n \;.$$

Applying (2) and lemma 1 we thus get that

$$\varphi_i(t) \leqslant \gamma_i(t) \quad \text{ for } \quad i = 1, ..., n, \quad 0 \leqslant t < a.$$

On the other hand

$$\gamma_i(t) = \int\limits_0^t \sum_{k=1}^n u_{ik}(t-\tau) \lambda_k^n(\tau) d\tau.$$

Hence

$$\varphi_i(t) \leqslant \int\limits_0^t \sum_{k=1}^n u_{ik}(t- au) \, \lambda_k^n(au) \, d au \,, \qquad i=1,\,...,\,n \;.$$

Notice now, that by the corollary $u_{ik}(t-\tau) \ge 0$ and obviously $\lambda_{k}^{n}(\tau) \le \sigma^{n}(\tau)$. Therefore

$$\varphi_i(t) \leqslant \int\limits_0^t \sum_{k=1}^n u_{ik}(t-\tau) \, \sigma_n(\tau) \, d\tau.$$

But (3) and lemma 2 imply that

$$\sum_{k=1}^n u_{ik}(t-\tau) \leqslant \psi_i(t-\tau) , \quad i=1,\ldots,n .$$

We have then

$$arphi_i(t) \leqslant \int\limits_0^t \psi_i(t- au)\,\sigma_n(au)\,d au\;, \quad ext{ for } \quad i=1,\,...,\,n\;.$$

The limit passage in the above inequalities together with (5) proves the assertion.

- 2. This section deals with-non-linear inequalities. We assume in the following that the functions $f_i(t, y_1, y_2, ..., y_n, ...)$ (i = 1, 2, ...) are defined for $t \in (0, \alpha)$ and for arbitrary real-valued sequences $y = \{y_k\}$. They are continuous in the following sense: for each i, if for every k, $y_k^r \to y_k$ and $t' \to t$ then $f_i(t', y_1', y_2', ..., y_n', ...) \to f_i(t, y_1, y_2, ..., y_n, ...)$. The following condition generalizes the condition (W) of lemma 2:
- (C) for every i, if $\overline{y}_k \leqslant \overline{\overline{y}}_k$ for $k \neq i$ then $f_i(t, \overline{y}_1, \overline{y}_2, ..., \overline{y}_{i-1}, y_i, \overline{y}_{i+1}, ...) \leqslant f_i(t, \overline{\overline{y}}_1, \overline{\overline{y}}_2, ..., \overline{\overline{y}}_{i-1}, y_i, \overline{\overline{y}}_{i+1}, ...).$

We begin with the following

THEOREM 2. Suppose that the functions $f_i(t, y_1, y_2, ..., y_n, ...)$ (i = 1, 2, ...) satisfy (C). We assume that there exist finite constants $M_i > 0$ such that

(6)
$$|f_i(t, y_1, y_2, ..., y_n, ...)| \leq M_i, \quad i = 1, 2, ...$$

for $t \in (0, \alpha)$ and $y = \{y_k\}$ arbitrary. Suppose we are given a sequence of functions $\{\varphi_i(t)\}$ which are continuous on $(0, \alpha)$ and satisfy on $(0, \alpha)$ the following inequalities

(7)
$$\overline{D}_{+}\varphi_{i}(t) \leqslant f_{i}(t, \varphi_{1}(t), \varphi_{2}(t), \ldots, \varphi_{n}(t), \ldots).$$

Then there exists the solution $\{\omega_i(t)\}\$ in $\{0,a\}$ of the infinite system

(8)
$$\omega_i'(t) = f_i(t, \omega_1(t), \omega_2(t), ..., \omega_n(t), ...), \quad i = 1, 2, ...$$

such that $\omega_i(0) = \varphi_i(0)$ and

(9)
$$\varphi_i(t) \leqslant \omega_i(t) \quad \text{for} \quad t \in (0, \alpha) \quad \text{and} \quad i = 1, 2, ...$$

Proof. Suppose that the continuous functions $\psi_i(t)$ satisfy on (0, a) the inequalities

(10)
$$\overline{D}_{+}\psi_{i}(t) \leqslant f_{i}(t, \psi_{1}(t), \psi_{2}(t), ..., \psi_{n}(t), ...), \quad i = 1, 2, ...$$

Let us consider the following differential equation

(11)
$$y' = F_i(t, y) \equiv f_i(t, \psi_1(t), \psi_2(t), \dots, \psi_{i-1}(t), y, \psi_{i+1}(t), \dots).$$

Obviously F_i is continuous in (t, y). On the other hand (10) implies $\overline{D}_+\psi_i(t) \leq F_i(t, \psi_i(t))$. Hence by lemma 1

(12)
$$\psi_i(t) \leqslant \psi_i^1(t) \quad \text{for} \quad t \in (0, a)$$

where $\psi_i^1(t)$ is the right-hand maximum solution of (11) such that $\psi_i(0) = \psi_i^1(0)$. This maximum solution exists in the whole interval (0, a). This is an immediate consequence of the boundedness of f_i . We have also

(13)
$$\frac{d}{dt}\psi_i^1(t) = F_i(t, \psi_i^1(t)).$$

By (12), (13) and condition (C) we get

$$(14) \qquad \quad \frac{d}{dt} \, \psi_i^1(t) \leqslant f_i\!\!\left(\!t\,, \psi_1^1\!\!\left(t\right), \psi_2^1\!\!\left(t\right), \, ..., \, \psi_n^1\!\!\left(t\right), \, ...\right) \,, \qquad i = 1\,,\, 2\,, \, ...$$

We see now that to every sequence $\{\psi_k(t)\}$ of functions which satisfy (10) there corresponds a sequence $\{\psi_k^1(t)\}$ such that the conditions (12), (13) and (14) hold. We have just to do with a transformation law which maps $\psi = \{\psi_k(t)\}$ on the sequence $\psi^1 = \{\psi_k^1(t)\}$. Denote this transformation by F.

Hence $F\psi = \psi^1$. It follows from (14) that we can apply F to ψ^1 , or more generally, that the sequence $\psi^{n+1} = F\psi^n$ is well defined. It is easy to prove that

$$(15) \psi_i^n(t) \leqslant \psi_i^{n+1}(t)$$

and

(16)
$$\frac{d}{dt}\psi_i^n(t) = f_i(t, \psi_1^{n-1}(t), ..., \psi_{i-1}^{n-1}(t), \psi_i^n(t), \psi_{i+1}^{n-1}(t), ...).$$

The inequalities $|\psi_i^n(t)| \leq M_i t + |\psi_i(0)|, \left|\frac{d}{dt}\psi_i^n(t)\right| \leq M_i$ show that for a fixed i the sequence $\{\psi_i^n(t)\}$ is equibounded and equicontinuous on every compact contained in $\langle 0, \alpha \rangle$. Hence, the limits $\lim_{n \to \infty} \psi_i^n(t) \stackrel{\text{df}}{=} \omega_i(t)$ exist and the convergence is almost uniform on $\langle 0, \alpha \rangle$. It follows from (16) that $\omega_i'(t) = f_i(t, \omega_1(t), \omega_2(t), \ldots, \omega_n(t), \ldots)$. By (15) we conclude that $\psi_i(t) \leq \omega_i(t)$ for $t \in \langle 0, \alpha \rangle$ and $i = 1, 2, \ldots$ Then assertion of our theorem follows if we put $\psi_i(t) = \varphi_i(t)$.

The supposed inequalities $|f_i| \leq M_i$ may be replaced by the following assumption: $|f_i(t, y_1, ..., y_i, ...)| \leq g_i(t, |y_i|)$, $g_i(t, z)$ are continuous and for an arbitrary initial value $y_i^0 \geq 0$ the right-hand maximum solution of equation $y' = g_i(t, y)$ passing through the point $(0, y_i^0)$ exists in the whole interval (0, a).

It is easy to see that the method used in the proof of theorem 2 does not need the assumption that the considered systems are countable. Hence, in theorem 2 the countable systems may be replaced by an arbitrary infinite systems. However, in the case of countable systems theorem 2 can be proved by using following arguments: suppose that the sequence $\{\varphi_i(t)\}$ satisfies (7) and consider the finite system

(17)
$$y'_{i} = F_{i}^{n}(t, y_{1}, ..., y_{n}) \equiv f_{i}(t, y_{1}, y_{2}, ..., y_{n}, \varphi_{n+1}(t), \varphi_{n+2}(t), ...),$$

$$i = 1, 2, ..., n.$$

Condition (C) implies that F_i^n satisfy contition (W) of lemma 1. Denote by $\overset{n}{\omega}_1(t), \ldots, \overset{n}{\omega}_n(t)$ the right-hand maximum solution of (17) such that $\overset{n}{\omega}_i(0) = \varphi_i(0)$. The inequalities (7) imply the following inequalities

$$\overline{D}_{+}arphi_{i}(t)\leqslant \overline{F}_{i}^{n}(t,\,arphi_{1}(t),\,...\,,\,arphi_{n}(t))\;, \qquad i=1,\,...,\,n\;.$$

Hence, by lemma 1

(18)
$$\varphi_i(t) \leqslant \overset{n}{\omega}_i(t) \quad \text{for} \quad i = 1, 2, ..., n, \quad t \in (0, \alpha).$$

Observe that by (C) and (18)

$$\overline{D}_{+}\varphi_{n+1}(t) \leqslant f_{n+1}(t, \overset{n}{\omega}_{1}(t), \dots, \overset{n}{\omega}_{n}(t), \varphi_{n+1}(t), \varphi_{n+2}(t), \dots) \\
= F_{n+1}^{n+1}(t, \overset{n}{\omega}_{1}(t), \dots, \overset{n}{\omega}_{n}(t), \varphi_{n+1}(t)).$$

This inequality and the definition of $\overset{n}{\omega}_{i}(t)$ imply by lemma 1

$$\overset{n}{\omega_i}(t)\leqslant\overset{n+1}{\omega_i}(t)\;, \qquad i=1\,,\,...\,,\,n\;, \qquad arphi_{n+1}(t)\leqslant\overset{n+1}{\omega_{n+1}}(t)\;.$$

Arguments similar to those used in the proof of theorem 2 show that the limits $\lim_{n\to\infty} \overset{n}{\omega}_i(t)$ are the components of a solution of system $y_i'=f_i(t,y_1,t_1)$

...,
$$y_n$$
, ...) and obviously $\varphi_i(t) \leqslant \lim_{n \to \infty} \overset{n}{\omega}_i(t)$.

THEOREM 3. Suppose that f_i satisfy (C) and $|f_i| \leq M_i < +\infty$. Then for every sequence $\overset{\text{o}}{y} = \{\overset{\text{o}}{y_i}\}$ there exists in (0,a) the right-hand maximum solution $\{\omega_i(t:\overset{\text{o}}{y})\}$ of the system

(19)
$$y'_i = f_i(t, y_1, ..., y_n, ...), \quad i = 1, 2, ..., n$$

such that $\omega_i(0:y) = \overset{0}{y}_i$. If the functions $\varphi_i(t)$ are continuous on $\langle 0, a \rangle$ and satisfy on $\langle 0, a \rangle$ the inequalities

$$\bar{D}_+ \varphi_i(t) \leqslant f_i(t, \varphi_1(t), \varphi_2(t), \ldots, \varphi_n(t), \ldots), \qquad i = 1, 2, \ldots$$

then
$$\varphi_i(t) \leqslant \omega_i(t; \varphi(0))$$
 $(\varphi(0) = \{\varphi_i(0)\})$ for $i = 1, 2, ...$ and $t \in (0, a)$.

Proof. The functions $\psi_i(t) = -M_i t + \overset{0}{y_i}$ satisfy (10). It follows from theorem 2 that there exists on (0, a) at least one solution $\{\omega_i(t)\}$ of (19) such that $\omega_i(0) = \overset{0}{y_i}$. Denote by Ω_i the set of *i*-th components of solutions of (19) passing through $(0, \overset{0}{y})$. We define now

(20)
$$\omega_i(t: \overset{\scriptscriptstyle 0}{y}) = \sup_{\omega \in \Omega_i} \omega(t) .$$

The functions $\omega \in \Omega_i$ are equibounded and equicontinuous in every compact subinterval of $(0, \alpha)$. We get therefore that $\omega_i(t; \overset{0}{y})$ is continuous in t on $(0, \alpha)$. Let $\{\omega_i(t)\}$ be an arbitrary solution of (19) such that $\omega_i(0) = \overset{0}{y_i}$. We have

$$\omega_i(t) = f_i(t, \omega_1(t), ..., \omega_n(t), ...), \quad i = 1, 2, ...$$

and by (20)

(21)
$$\omega_i'(t) \leqslant f_i(t, \omega_1(t; \overset{0}{y}), \ldots, \omega_{i-1}(t; \overset{0}{y}), \omega_i(t), \omega_{i+1}(t; \overset{0}{y}), \ldots)$$

It follows from (21) that

(22)
$$\omega_i(t) \leqslant \sigma_i(t), \quad i = 1, 2, ..., \quad t \in (0, \alpha)$$

where $\sigma_i(t)$ is the right-hand maximum solution of the equation

(23)
$$y' = f_i(t, \omega_1(t; \overset{0}{y}), ..., \omega_{i-1}(t; \overset{0}{y}), y, \omega_{i+1}(t; \overset{0}{y}), ...)$$

such that $\sigma_i(0) = \overset{0}{y_i}$. The inequality (22) holds for an arbitrary solution. We get therefore

$$(24) \omega_i(t: \overset{0}{y}) \leqslant \sigma_i(t)$$

and consequently by (20) and (C)

$$\sigma_i'(t) \leqslant f_i(t, \sigma_1(t), \ldots, \sigma_n(t), \ldots)$$
.

By theorem 2 there exists a solution $\{\tau_i(t)\}$ of (19) such that $\tau_i(0) = \overset{0}{y_i}$ and

$$\sigma_i(t) \leqslant \tau_i(t) .$$

But $\tau_i(t) \leq \omega_i(t; \overset{\circ}{y})$ and by (24) and (25) we derive $\tau_i(t) = \omega_i(t; \overset{\circ}{y})$. We have just proved that $\{\omega_i(t; \overset{\circ}{y})\}$ is a solution of (19). It follows from (20) that this solution is the right-hand maximum one. The second part of the assertion follows easily from theorem 2 and from (20).

References

- [1] G. E. H. Reuter and W. Ledermann, On the differential equations for the transition probabilities of Markov processes with enumerably many states, Proc. Cambridge Phil. Soc. 49 (2) (1953), p. 247-262.
- [2] T. Ważewski, Systèmes des équations et des inégalités différentielles ordinaires aux deuxièmes membres monotones et leurs applications, Ann. Soc. Pol. Math. 23 (1950), p. 112-156.

INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES

Reçu par la Rédaction le 5. 10. 1960